OFFSET
1,1
COMMENTS
I call these primes (additive) "pointer primes", in the sense that such primes p "point" to the next prime after p when the sum of the digits of p is added to p.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
EXAMPLE
13 + sum of digits of 13 = 17, which is the next prime after 13. Hence 13 belongs to the sequence.
MAPLE
a:= proc(n) option remember; local p, q;
p:= a(n-1); q:= nextprime(p);
do p:= q; q:= nextprime(p);
if add(i, i=convert(p, base, 10))=q-p then break fi
od; p
end: a(1):= 11:
seq(a(n), n=1..50); # Alois P. Heinz, Nov 18 2017
MATHEMATICA
r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Plus, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r
Transpose[Select[Partition[Prime[Range[1000]], 2, 1], #[[2]]==#[[1]]+Total[ IntegerDigits[ #[[1]]]]&]][[1]] (* Harvey P. Dale, Apr 20 2013 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jan 09 2004
STATUS
approved