login
A089824
Primes p such that the next prime after p can be obtained from p by adding the sum of the digits of p.
3
11, 13, 101, 103, 181, 293, 631, 701, 811, 1153, 1171, 1409, 1801, 1933, 2017, 2039, 2053, 2143, 2213, 2521, 2633, 3041, 3089, 3221, 3373, 3391, 3469, 3643, 3739, 4057, 4231, 5153, 5281, 5333, 5449, 5623, 5717, 6053, 6121, 6301, 7043, 7333, 8101, 8543, 9241
OFFSET
1,1
COMMENTS
I call these primes (additive) "pointer primes", in the sense that such primes p "point" to the next prime after p when the sum of the digits of p is added to p.
LINKS
EXAMPLE
13 + sum of digits of 13 = 17, which is the next prime after 13. Hence 13 belongs to the sequence.
MAPLE
a:= proc(n) option remember; local p, q;
p:= a(n-1); q:= nextprime(p);
do p:= q; q:= nextprime(p);
if add(i, i=convert(p, base, 10))=q-p then break fi
od; p
end: a(1):= 11:
seq(a(n), n=1..50); # Alois P. Heinz, Nov 18 2017
MATHEMATICA
r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Plus, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r
Transpose[Select[Partition[Prime[Range[1000]], 2, 1], #[[2]]==#[[1]]+Total[ IntegerDigits[ #[[1]]]]&]][[1]] (* Harvey P. Dale, Apr 20 2013 *)
PROG
(Python)
from sympy import isprime, nextprime
def ok(n): return isprime(n) and sum(map(int, str(n))) + n == nextprime(n)
print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Dec 07 2024
CROSSREFS
Sequence in context: A023317 A056436 A334930 * A276694 A380132 A086549
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jan 09 2004
STATUS
approved