Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 07 2024 19:30:03
%S 11,13,101,103,181,293,631,701,811,1153,1171,1409,1801,1933,2017,2039,
%T 2053,2143,2213,2521,2633,3041,3089,3221,3373,3391,3469,3643,3739,
%U 4057,4231,5153,5281,5333,5449,5623,5717,6053,6121,6301,7043,7333,8101,8543,9241
%N Primes p such that the next prime after p can be obtained from p by adding the sum of the digits of p.
%C I call these primes (additive) "pointer primes", in the sense that such primes p "point" to the next prime after p when the sum of the digits of p is added to p.
%H Alois P. Heinz, <a href="/A089824/b089824.txt">Table of n, a(n) for n = 1..10000</a>
%e 13 + sum of digits of 13 = 17, which is the next prime after 13. Hence 13 belongs to the sequence.
%p a:= proc(n) option remember; local p, q;
%p p:= a(n-1); q:= nextprime(p);
%p do p:= q; q:= nextprime(p);
%p if add(i, i=convert(p, base, 10))=q-p then break fi
%p od; p
%p end: a(1):= 11:
%p seq(a(n), n=1..50); # _Alois P. Heinz_, Nov 18 2017
%t r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Plus, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r
%t Transpose[Select[Partition[Prime[Range[1000]],2,1],#[[2]]==#[[1]]+Total[ IntegerDigits[ #[[1]]]]&]][[1]] (* _Harvey P. Dale_, Apr 20 2013 *)
%o (Python)
%o from sympy import isprime, nextprime
%o def ok(n): return isprime(n) and sum(map(int, str(n))) + n == nextprime(n)
%o print([k for k in range(10**4) if ok(k)]) # _Michael S. Branicky_, Dec 07 2024
%K base,nonn,changed
%O 1,1
%A _Joseph L. Pe_, Jan 09 2004