login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185186 Numbers divisible by at least one of their digits other than 1. 2
2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 20, 22, 24, 25, 26, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 52, 55, 60, 62, 63, 64, 65, 66, 70, 72, 75, 77, 80, 82, 84, 85, 88, 90, 92, 93, 95, 96, 99, 102, 104, 105, 112, 115, 120, 122, 123, 124, 125, 126, 128, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The only primes in the sequence are 2, 3, 5, 7. No repunits are eligible.

Also, an interesting class of non-eligible integers consists of some powers of 2, 3 and 7:

"2, 4, 8-less" powers of 2, 2^m = 1, 16, 65536 with m = 0, 4, 16 (a subsequence of A034293);

"3, 9-less" powers of 3, 3^m = {1, 27, 81, 177147, 1162261467}, with m = {0, 3, 4, 11, 19} (a subsequence of A131629);

"seven-less" powers of 7, 7^m, with m = 0, 2, 3, 4, 7, 16, 22, 24, 39 (see 6th row of A136291 Array read by rows: each row is a sequence of numbers k such that n^k does not contain the digit n).

Asymptotic density 27/35 = 0.771... - Charles R Greathouse IV, Mar 11, 2011

The asymptotic density of numbers having a prime digit is 1 for each prime digit. The asymptotic density of numbers being divisible by 2, 3, 5 or 7 is -Sum_{d|210, d>1}((-1)^omega(d) / d) = 27/35. Also, the asymptotic density of numbers divisible by the first n primes is r(n) where r(1) = 1/2 and r(n) = r(n - 1) + (1 - r(n - 1)) / prime(n). - David A. Corneth, May 28 2017

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..10000

MATHEMATICA

digDivQ[n_] := AnyTrue[IntegerDigits[n], # > 1 && Mod[n, #] == 0 &]; Select[Range[200], digDivQ] (* Giovanni Resta, May 27 2017 *)

PROG

(PARI) is(n) = my(d = vecsort(digits(n), , 8), t = 1); while(t<=#d&&d[t] < 2, t++); sum(i=t, #d, n%d[i]==0) > 0 \\ David A. Corneth, May 27 2017

CROSSREFS

Cf. A187398, A187516, A187238, A187533, A187534, A187551.

Sequence in context: A008816 A002271 A048381 * A115569 A064653 A130588

Adjacent sequences:  A185183 A185184 A185185 * A185187 A185188 A185189

KEYWORD

nonn,base

AUTHOR

Zak Seidov, Mar 11 2011

EXTENSIONS

Name edited by Alonso del Arte, May 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)