The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185186 Numbers divisible by at least one of their digits other than 1. 3
 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 20, 22, 24, 25, 26, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 50, 52, 55, 60, 62, 63, 64, 65, 66, 70, 72, 75, 77, 80, 82, 84, 85, 88, 90, 92, 93, 95, 96, 99, 102, 104, 105, 112, 115, 120, 122, 123, 124, 125, 126, 128, 132 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The only primes in the sequence are 2, 3, 5, 7. No repunits are eligible. Also, an interesting class of non-eligible integers consists of some powers of 2, 3 and 7: "2, 4, 8-less" powers of 2, 2^m = 1, 16, 65536 with m = 0, 4, 16 (a subsequence of A034293); "3, 9-less" powers of 3, 3^m = {1, 27, 81, 177147, 1162261467}, with m = {0, 3, 4, 11, 19} (a subsequence of A131629); "seven-less" powers of 7, 7^m, with m = 0, 2, 3, 4, 7, 16, 22, 24, 39 (see 6th row of A136291 Array read by rows: each row is a sequence of numbers k such that n^k does not contain the digit n). Asymptotic density 27/35 = 0.771... - Charles R Greathouse IV, Mar 11 2011 The asymptotic density of numbers having a prime digit is 1 for each prime digit. The asymptotic density of numbers being divisible by 2, 3, 5 or 7 is -Sum_{d|210, d>1}((-1)^omega(d) / d) = 27/35. Also, the asymptotic density of numbers divisible by the first n primes is r(n) where r(1) = 1/2 and r(n) = r(n - 1) + (1 - r(n - 1)) / prime(n). - David A. Corneth, May 28 2017 LINKS Giovanni Resta, Table of n, a(n) for n = 1..10000 MATHEMATICA digDivQ[n_] := AnyTrue[IntegerDigits[n], # > 1 && Mod[n, #] == 0 &]; Select[Range[200], digDivQ] (* Giovanni Resta, May 27 2017 *) PROG (PARI) is(n) = my(d = vecsort(digits(n), , 8), t = 1); while(t<=#d&&d[t] < 2, t++); sum(i=t, #d, n%d[i]==0) > 0 \\ David A. Corneth, May 27 2017 CROSSREFS Cf. A187398, A187516, A187238, A187533, A187534, A187551. Sequence in context: A008816 A002271 A048381 * A336580 A115569 A064653 Adjacent sequences:  A185183 A185184 A185185 * A185187 A185188 A185189 KEYWORD nonn,base AUTHOR Zak Seidov, Mar 11 2011 EXTENSIONS Name edited by Alonso del Arte, May 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 14:16 EST 2020. Contains 338877 sequences. (Running on oeis4.)