

A187516


Numbers divisible by at least two of their digits, different and >1.


8



24, 36, 48, 124, 126, 128, 132, 135, 162, 168, 175, 184, 204, 208, 216, 224, 234, 240, 244, 246, 248, 250, 264, 273, 276, 280, 284, 288, 306, 312, 315, 324, 328, 336, 342, 345, 348, 357, 360, 366, 369, 372, 375, 378, 384, 396, 408, 412, 420, 424, 426, 428, 432, 435, 448, 452, 456, 462, 468, 472, 476, 480, 488, 492, 495, 520, 524, 528, 540, 564, 584, 612, 624, 630, 636, 639, 642, 648
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 225 such integers < 2000, 1679 less than 10^4, 21389 less than 10^5, and 251613 less than 10^6.
Asymptotic density 17/35 = 0.485....  Charles R Greathouse IV, Mar 11, 2011


LINKS

Table of n, a(n) for n=1..78.


MATHEMATICA

s={}; Do[un=Select[Union[IntegerDigits[n]], #>1&]; cnt=0; Do[d=un[[k]]; If[Mod[n, d]==0, cnt++; If[cnt>1, AppendTo[s, n]; Goto[ne]]], {k, Length@un}]; Label[ne], {n, 10000}]; s
dtdQ[n_]:=Total[Boole[Divisible[n, Union[Select[IntegerDigits[n], #>1&]]]]]>1; Select[Range[700], dtdQ]


PROG

(PARI) is(n)=my(d=Set(digits(n))); sum(i=1, #d, d[i]>1 && n%d[i]==0)>1 \\ Charles R Greathouse IV, Feb 11 2017


CROSSREFS

Sequence in context: A300794 A327945 A078347 * A165602 A124283 A143645
Adjacent sequences: A187513 A187514 A187515 * A187517 A187518 A187519


KEYWORD

nonn,base


AUTHOR

Zak Seidov, Mar 10 2011


STATUS

approved



