login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)). 11
0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Daniel Gabric and Joe Sawada, Investigating the discrepancy property of de Bruijn sequences, University of Guelph (Canada, 2020).

János Pach and Pankaj K. Agarwal, Combinatorial Geometry, p. 220, 1995, Problem 13.10.

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).

FORMULA

G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).

a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011

a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013

E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021

MAPLE

f := n->n^2/4+3*n/2+g(n);

g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;

seq(f(n), n=-3..50);

MATHEMATICA

CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x, 0, 60}], x] (* G. C. Greubel, Sep 12 2019 *)

PROG

(PARI) concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019

(Sage)

def A008811_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()

A008811_list(60) # G. C. Greubel, Sep 12 2019

(GAP) a:=[0, 1, 2, 3, 4, 7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019

CROSSREFS

Cf. A129756 (first differences).

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Sequence in context: A073627 A062042 A107817 * A144678 A309678 A279225

Adjacent sequences:  A008808 A008809 A008810 * A008812 A008813 A008814

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 19:02 EDT 2021. Contains 348287 sequences. (Running on oeis4.)