|
|
A008811
|
|
Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
|
|
11
|
|
|
0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Daniel Gabric and Joe Sawada, Investigating the discrepancy property of de Bruijn sequences, University of Guelph (Canada, 2020).
János Pach and Pankaj K. Agarwal, Combinatorial Geometry, p. 220, 1995, Problem 13.10.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
|
|
FORMULA
|
G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
|
|
MAPLE
|
f := n->n^2/4+3*n/2+g(n);
g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;
seq(f(n), n=-3..50);
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x, 0, 60}], x] (* G. C. Greubel, Sep 12 2019 *)
|
|
PROG
|
(PARI) concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008811_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()
A008811_list(60) # G. C. Greubel, Sep 12 2019
(GAP) a:=[0, 1, 2, 3, 4, 7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
|
|
CROSSREFS
|
Cf. A129756 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).
Sequence in context: A073627 A062042 A107817 * A144678 A309678 A279225
Adjacent sequences: A008808 A008809 A008810 * A008812 A008813 A008814
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|