OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,0,0,0,0,1,0,-2,0,1).
FORMULA
G.f.: (1+x^10)/((1-x^2)^2*(1-x^9)).
MAPLE
seq(coeff(series((1+x^10)/((1-x^2)^2*(1-x^9)), x, n+1), x, n), n = 0..80);
MATHEMATICA
CoefficientList[Series[(1+x^10)/(1-x^2)^2/(1-x^9), {x, 0, 80}], x] (* Harvey P. Dale, Nov 28 2012 *)
LinearRecurrence[{0, 2, 0, -1, 0, 0, 0, 0, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 7, 2}, 80] (* G. C. Greubel, Sep 12 2019 *)
PROG
(PARI) my(x='x+O('x^80)); Vec((1+x^10)/((1-x^2)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^10)/((1-x^2)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008802_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^10)/((1-x^2)^2*(1-x^9))).list()
A008802_list(80) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 7, 2];; for n in [13..80] do a[n]:=2*a[n-2] -a[n-4]+a[n-9]-2*a[n-10]+a[n-12]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms added by G. C. Greubel, Sep 12 2019
STATUS
approved