OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,0,0,1,0,-2,0,1).
FORMULA
G.f.: (1+x^8)/((1-x^2)^2 * (1-x^7)).
MAPLE
seq(coeff(series((1+x^8)/((1-x^2)^2*(1-x^7)), x, n+1), x, n), n = 0..80);
MATHEMATICA
CoefficientList[Series[(1+x^8)/((1-x^2)^2*(1-x^7)), {x, 0, 80}], x] (* G. C. Greubel, Sep 12 2019 *)
LinearRecurrence[{0, 2, 0, -1, 0, 0, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 0, 4, 1, 6, 2, 8}, 80] (* Harvey P. Dale, Jul 07 2021 *)
PROG
(PARI) my(x='x+O('x^80)); Vec((1+x^8)/((1-x^2)^2*(1-x^7))) \\ G. C. Greubel, Sep 12 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^8)/((1-x^2)^2*(1-x^7)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008800_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^8)/((1-x^2)^2*(1-x^7))).list()
A008800_list(80) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 1, 6, 2, 8];; for n in [12..80] do a[n]:=2*a[n-2] -a[n-4]+a[n-7]-2*a[n-9]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition clarified by N. J. A. Sloane, Feb 02 2018
More terms added by G. C. Greubel, Sep 12 2019
STATUS
approved