login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089595
Table T(n,k), n>=0 and k>=0: Stern's diatomic array read by antidiagonals (version 5).
0
1, 0, 1, -1, 1, 1, -3, 0, 2, 1, -2, -1, 1, 3, 1, -7, -1, 1, 2, 4, 1, -5, -4, 0, 3, 3, 5, 1, -8, -3, -1, 1, 5, 4, 6, 1, -3, -5, -1, 2, 2, 7, 5, 7, 1, -13, -2, -2, 1, 5, 3, 9, 6, 8, 1, -10, -9, -1, 1, 3, 8, 4, 11, 7, 9, 1, -17, -7, -5, 0, 4, 5, 11, 5, 13, 8, 10, 1, -7, -12, -4, -1, 1, 7, 7, 14, 6, 15, 9, 11, 1, -18, -5, -7, -1, 3, 2, 10, 9, 17, 7
OFFSET
0,7
FORMULA
Each row is obtained by copying the previous row but interpolating the sum of pairs of adjacent terms.
T(n, 2*k) = T(n-1, k) = T(n, k) - A002487(k).
T(n, 2*k+1) = T(n, 2*k) + T(n, 2*k+2); T(0, 0)=1, T(0, 1)=0.
The k-th column is an arithmetic progression with : T(n, k) = T(0, k) + n* A002487(k).
EXAMPLE
row n=0 : 1, 0, -1, -3, -2, -7, -5, -8, -3, -13, -10, -17, -7, -18, -11, ...
row n=1 : 1, 1, 0, -1, -1, -4, -3, -5, -2, -9, -7, -12, -5, -13, ...
row n=2 : 1, 2, 1, 1, 0, -1, -1, -2, -1, -5, -4, -7, -3, ...
row n=3 : 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, ...
row n=4 : 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, ...
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Dec 30 2003
STATUS
approved