login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series. 11
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

Stern's diatomic array read by rows (version 4, the 0,1 version).

This sequence divided by A049456 gives another version of the Stern-Brocot tree.

Row n has length 2^n + 1.

Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.

Largest term of n-th row = A000045(n), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

REFERENCES

Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.

J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.

W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 8204 terms from Reinhard Zumkeller)

C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).

Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.

M. Shrader-Frechette, Modified Farey sequences and continued fractions, Math. Mag., 54 (1981), 60-63.

N. J. A. Sloane, Stern-Brocot or Farey Tree

Index entries for sequences related to Stern's sequences

FORMULA

Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.

EXAMPLE

0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456

The 0,1 version of Stern's diatomic array (cf. A002487) begins:

0,1,

0,1,1,

0,1,1,2,1,

0,1,1,2,1,3,2,3,1,

0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,

0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,

...

MATHEMATICA

f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)

PROG

(Haskell)

import Data.List (transpose)

import Data.Ratio ((%), numerator, denominator)

a049455 n k = a049455_tabf !! (n-1) !! (k-1)

a049455_row n = a049455_tabf !! (n-1)

a049455_tabf = map (map numerator) $ iterate

   (\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]

   where u +/+ v = (numerator u + numerator v) %

                   (denominator u + denominator v)

-- Reinhard Zumkeller, Apr 02 2014

(PARI) mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));

newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1])); ); concat(rowb, rowa[#rowa]); }

rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)); ); } \\ Michel Marcus, Apr 03 2019

CROSSREFS

Cf. A049456. Also A007305, A007306, A006842, A006843, A070878, A070879.

Row sums are A007051.

Cf. A000051 (row lengths), A293165 (distinct terms).

Sequence in context: A126304 A280522 A324796 * A322975 A133734 A109702

Adjacent sequences:  A049452 A049453 A049454 * A049456 A049457 A049458

KEYWORD

nonn,easy,tabf,frac,look,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 22:20 EST 2019. Contains 329208 sequences. (Running on oeis4.)