This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series. 11

%I

%S 0,1,0,1,1,0,1,1,2,1,0,1,1,2,1,3,2,3,1,0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,

%T 4,1,0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,

%U 1,0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,6,5,9

%N Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.

%C Stern's diatomic array read by rows (version 4, the 0,1 version).

%C This sequence divided by A049456 gives another version of the Stern-Brocot tree.

%C Row n has length 2^n + 1.

%C Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.

%C Largest term of n-th row = A000045(n), Fibonacci numbers. - _Reinhard Zumkeller_, Apr 02 2014

%D Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.

%D J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.

%D W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

%H Robert G. Wilson v, <a href="/A049455/b049455.txt">Table of n, a(n) for n = 1..10000</a> (first 8204 terms from Reinhard Zumkeller)

%H C. Giuli and R. Giuli, <a href="http://www.fq.math.ca/Scanned/17-2/giuli.pdf">A primer on Stern's diatomic sequence</a>, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).

%H Jennifer Lansing, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lansing/lansing2.html">Largest Values for the Stern Sequence</a>, J. Integer Seqs., 17 (2014), #14.7.5.

%H M. Shrader-Frechette, <a href="http://www.jstor.org/stable/2690435">Modified Farey sequences and continued fractions</a>, Math. Mag., 54 (1981), 60-63.

%H N. J. A. Sloane, <a href="/stern_brocot.html">Stern-Brocot or Farey Tree</a>

%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>

%F Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.

%e 0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456

%e The 0,1 version of Stern's diatomic array (cf. A002487) begins:

%e 0,1,

%e 0,1,1,

%e 0,1,1,2,1,

%e 0,1,1,2,1,3,2,3,1,

%e 0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,

%e 0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,

%e ...

%t f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* _Robert G. Wilson v_, Nov 10 2019 *)

%o (Haskell)

%o import Data.List (transpose)

%o import Data.Ratio ((%), numerator, denominator)

%o a049455 n k = a049455_tabf !! (n-1) !! (k-1)

%o a049455_row n = a049455_tabf !! (n-1)

%o a049455_tabf = map (map numerator) \$ iterate

%o (\row -> concat \$ transpose [row, zipWith (+/+) row \$ tail row]) [0, 1]

%o where u +/+ v = (numerator u + numerator v) %

%o (denominator u + denominator v)

%o -- _Reinhard Zumkeller_, Apr 02 2014

%o (PARI) mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));

%o newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}

%o rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ _Michel Marcus_, Apr 03 2019

%Y Cf. A049456. Also A007305, A007306, A006842, A006843, A070878, A070879.

%Y Row sums are A007051.

%Y Cf. A000051 (row lengths), A293165 (distinct terms).

%K nonn,easy,tabf,frac,look

%O 1,9

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)