This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049458 Generalized Stirling number triangle of first kind. 11
 1, -3, 1, 12, -7, 1, -60, 47, -12, 1, 360, -342, 119, -18, 1, -2520, 2754, -1175, 245, -25, 1, 20160, -24552, 12154, -3135, 445, -33, 1, -181440, 241128, -133938, 40369, -7140, 742, -42, 1, 1814400, -2592720, 1580508, -537628 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n,m)= ^3P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(3+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer polynomials for (exp(3*t),exp(t)-1). See A143492 for the unsigned version of this array and A143495 for the inverse. - Peter Bala, Aug 25 2008 REFERENCES Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp. LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened FORMULA a(n, m)= a(n-1, m-1) - (n+2)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n seq((-1)^(n-k)*coeff(expand(pochhammer(x+3, n)), x, k), k=0..n): seq(print(A049458_row(n)), n=0..8); # Peter Luschny, May 16 2013 MATHEMATICA t[n_, k_] := (-1)^(n - k)*Coefficient[ Pochhammer[x + 3, n], x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 17 2013, after Peter Luschny *) PROG (Haskell) a049458 n k = a049458_tabl !! n !! k a049458_row n = a049458_tabl !! n a049458_tabl = map fst \$ iterate (\(row, i) ->    (zipWith (-) ([0] ++ row) \$ map (* i) (row ++ [0]), i + 1)) ([1], 3) -- Reinhard Zumkeller, Mar 11 2014 CROSSREFS Unsigned column sequences are: A001710-A001714. Row sums (signed triangle): (n+1)!*(-1)^n. Row sums (unsigned triangle): A001715(n+3). Cf. A000035 A084938. Cf. A094645, A094646. A143492, A143495. - Peter Bala, Aug 25 2008 Sequence in context: A135888 A258245 A133366 * A143492 A243662 A062139 Adjacent sequences:  A049455 A049456 A049457 * A049459 A049460 A049461 KEYWORD sign,easy,tabl AUTHOR EXTENSIONS Second formula corrected by Philippe Deléham, Nov 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)