login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049460 Generalized Stirling number triangle of first kind. 8
1, -5, 1, 30, -11, 1, -210, 107, -18, 1, 1680, -1066, 251, -26, 1, -15120, 11274, -3325, 485, -35, 1, 151200, -127860, 44524, -8175, 835, -45, 1, -1663200, 1557660, -617624, 134449, -17360, 1330, -56, 1, 19958400, -20355120, 8969148, -2231012, 342769, -33320, 2002, -68, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n,m)= ^5P_n^m in the notation of the given reference with a(0,0) := 1.

The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(5+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1.

In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(5*t),exp(t)-1).

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).

FORMULA

a(n, m)= a(n-1, m-1) - (n+4)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n<m; a(n, -1) := 0, a(0, 0)=1. E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^5).

Triangle (signed) = [ -5, -1, -6, -2, -7, -3, -8, -4, -9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...]; triangle (unsigned) = [5, 1, 6, 2, 7, 3, 8, 4, 9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,5), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

EXAMPLE

{1}; {-5,1}; {30,-11,1}; {-210,107,-18,1}; ... s(2,x)= 30-11*x+x^2; S1(2,x)= -x+x^2 (Stirling1).

MATHEMATICA

a[n_, m_] := Pochhammer[m+1, n-m] SeriesCoefficient[Log[1+x]^m/(1+x)^5, {x, 0, n}];

Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

PROG

(Haskell)

a049460 n k = a049460_tabl !! n !! k

a049460_row n = a049460_tabl !! n

a049460_tabl = map fst $ iterate (\(row, i) ->

   (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 5)

-- Reinhard Zumkeller, Mar 11 2014

CROSSREFS

Unsigned column sequences are: A001720-A001724. Row sums (signed triangle): A001715(n+3)*(-1)^n. Row sums (unsigned triangle): A001725(n+5).

Cf. A000035 A084938.

Sequence in context: A144890 A144891 A135892 * A145926 A062140 A144355

Adjacent sequences:  A049457 A049458 A049459 * A049461 A049462 A049463

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang

EXTENSIONS

Second formula corrected by Philippe Deléham, Nov 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 17:04 EST 2019. Contains 329201 sequences. (Running on oeis4.)