login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001725 a(n) = n!/5!.
(Formerly M4243 N1772)
38
1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400, 174356582400, 2964061900800, 53353114214400, 1013709170073600, 20274183401472000, 425757851430912000, 9366672731480064000, 215433472824041472000, 5170403347776995328000 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,2

COMMENTS

The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=6) ~ exp(-x)/x*(1 - 6/x + 42/x^2 - 336/x^3 + 3024/x^4 - 30240/x^5 + 332640/x^6 - 3991680/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 5..300

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 265

Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling. II, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.

Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7

Index to divisibility sequences

Index entries for sequences related to factorial numbers

FORMULA

E.g.f. if offset 0: 1/(1-x)^6.

a(n) = A173333(n,5). - Reinhard Zumkeller, Feb 19 2010

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+6)/(x*(k+6) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013

G.f.: W(0)/(40*x^2) -1/(20*x^2) -1/(5*x) , where W(k) = 1 + 1/( 1 - x*(k+4)/( x*(k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013

a(n) = A245334(n,n-5) / 6. - Reinhard Zumkeller, Aug 31 2014

E.g.f.: x^5 / (5! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021

MATHEMATICA

lst={}; Do[AppendTo[lst, n!/5! ], {n, 5, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)

Range[5, 30]!/120 (* Harvey P. Dale, Dec 20 2014 *)

PROG

(PARI) a(n)=n!/120 \\ Charles R Greathouse IV, Jul 19 2011

(Magma) [Factorial(n)/120: n in [5..25]]; // Vincenzo Librandi, Jul 20 2011

(Haskell)

a001725 = (flip div 120) . a000142 -- Reinhard Zumkeller, Aug 31 2014

CROSSREFS

a(n)= A049374(n-4), n >= 1 (first column of triangle). Cf. A049460, A051339. a(n)= A051338(n-5, 0)*(-1)^(n-1) (first unsigned column of triangle).

Cf. A245334, A000142.

Sequence in context: A320758 A262671 A029588 * A123510 A265871 A132804

Adjacent sequences: A001722 A001723 A001724 * A001726 A001727 A001728

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Harvey P. Dale, Dec 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 11:14 EST 2022. Contains 358517 sequences. (Running on oeis4.)