login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001725 a(n) = n!/5!.
(Formerly M4243 N1772)
38
1, 6, 42, 336, 3024, 30240, 332640, 3991680, 51891840, 726485760, 10897286400, 174356582400, 2964061900800, 53353114214400, 1013709170073600, 20274183401472000, 425757851430912000, 9366672731480064000, 215433472824041472000, 5170403347776995328000 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,2
COMMENTS
The asymptotic expansion of the higher-order exponential integral E(x,m=1,n=6) ~ exp(-x)/x*(1 - 6/x + 42/x^2 - 336/x^3 + 3024/x^4 - 30240/x^5 + 332640/x^6 - 3991680/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling. II, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 107-108 1963 1-77.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
FORMULA
E.g.f. if offset 0: 1/(1-x)^6.
a(n) = A173333(n,5). - Reinhard Zumkeller, Feb 19 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+6)/(x*(k+6) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: W(0)/(40*x^2) -1/(20*x^2) -1/(5*x) , where W(k) = 1 + 1/( 1 - x*(k+4)/( x*(k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A245334(n,n-5) / 6. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^5 / (5! * (1 - x)). - Ilya Gutkovskiy, Jul 09 2021
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=5} 1/a(n) = 120*e - 325.
Sum_{n>=5} (-1)^(n+1)/a(n) = 45 - 120/e. (End)
MATHEMATICA
lst={}; Do[AppendTo[lst, n!/5! ], {n, 5, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
Range[5, 30]!/120 (* Harvey P. Dale, Dec 20 2014 *)
PROG
(PARI) a(n)=n!/120 \\ Charles R Greathouse IV, Jul 19 2011
(Magma) [Factorial(n)/120: n in [5..25]]; // Vincenzo Librandi, Jul 20 2011
(Haskell)
a001725 = (flip div 120) . a000142 -- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
a(n)= A049374(n-4), n >= 1 (first column of triangle). Cf. A049460, A051339. a(n)= A051338(n-5, 0)*(-1)^(n-1) (first unsigned column of triangle).
Sequence in context: A367241 A262671 A029588 * A361547 A123510 A265871
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Dec 20 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 00:45 EDT 2024. Contains 371696 sequences. (Running on oeis4.)