login
A367241
G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^2)^3.
2
1, 1, 6, 42, 335, 2886, 26166, 246028, 2377161, 23459250, 235452723, 2395998060, 24663705924, 256358715585, 2686893609015, 28364934291912, 301334854075058, 3219067773992448, 34558507062732315, 372646872976093760, 4034272938342360147
OFFSET
0,3
FORMULA
If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
PROG
(PARI) a(n, s=3, t=3, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 11 2023
STATUS
approved