login
A001724
Generalized Stirling numbers.
(Formerly M5248 N2282)
3
1, 35, 835, 17360, 342769, 6687009, 131590430, 2642422750, 54509190076, 1159615530788, 25497032420496, 580087776122400, 13662528306823824, 333132304121991504, 8407011584355624288, 219490450157530821024, 5925108461354500651776, 165275526944869750483200
OFFSET
0,2
COMMENTS
The asymptotic expansion of the higher order exponential integral E(x,m=5,n=5) ~ exp(-x)/x^5*(1 - 35/x + 835/x^2 - 17360/x^3 + 342769/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices : Fuss-Catalan and Raney distribution, arXiv version, arXiv:1103.3453 [math-ph], 2011.
FORMULA
a(n) = sum((-1)^(n+k)*binomial(k+4, 4)*5^k*stirling1(n+4, k+4), k=0..n). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (6-156*log(1-x)+753*log(1-x)^2-1066*log(1-x)^3+420*log(1-x)^4)/(6*(1-x)^9). - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-4) = |f(n,4,5)|, for n>=4. - Milan Janjic, Dec 21 2008
MATHEMATICA
Table[Sum[(-1)^(n + k)*Binomial[k + 4, 4]*5^k*StirlingS1[n + 4, k + 4], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*5^k*stirling(n+4, k+4, 1)) \\ Michel Marcus, Jan 20 2016
CROSSREFS
Sequence in context: A223957 A109508 A267834 * A062194 A004372 A080250
KEYWORD
nonn
EXTENSIONS
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
STATUS
approved