login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062194 Fifth column sequence of triangle A062139 (generalized a=2 Laguerre). 3
1, 35, 840, 17640, 352800, 6985440, 139708800, 2854051200, 59935075200, 1298593296000, 29088489830400, 674324082432000, 16183777978368000, 402104637462528000, 10339833534750720000, 275039572024369152000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..100

Index entries for sequences related to Laguerre polynomials

FORMULA

E.g.f.: (1 + 24*x + 90*x^2 + 80*x^3 + 15*x^4)/(1-x)^11.

a(n) = A062139(n+4, 4).

a(n) = (n+4)!*binomial(n+6, 6)/4!.

If we define f(n,i,x)= Sum_{k=i..n} Sum_{j=i..n} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-4) = (-1)^n*f(n,4,-7), (n >= 4). - Milan Janjic, Mar 01 2009

MATHEMATICA

Table[(n+4)!*Binomial[n+6, 6]/4!, {n, 0, 20}] (* G. C. Greubel, May 12 2018 *)

PROG

(Sage) [binomial(n, 6)*factorial (n-2)/factorial (4) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009

(PARI) { f=6; for (n=0, 100, f*=n + 4; write("b062194.txt", n, " ", f*binomial(n + 6, 6)/24) ) } \\ Harry J. Smith, Aug 02 2009

(MAGMA) [Factorial(n+4)*Binomial(n+6, 6)/Factorial(4): n in [0..20]]; // G. C. Greubel, May 12 2018

(GAP) List([0..15], n->Factorial(n+4)*Binomial(n+6, 6)/Factorial(4)); # Muniru A Asiru, Jul 01 2018

CROSSREFS

Cf. A001710, A005461, A005990, A062193.

Sequence in context: A109508 A267834 A001724 * A004372 A080250 A014934

Adjacent sequences:  A062191 A062192 A062193 * A062195 A062196 A062197

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jun 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 12:07 EST 2020. Contains 331996 sequences. (Running on oeis4.)