login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062193 Fourth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre). 4
1, 24, 420, 6720, 105840, 1693440, 27941760, 479001600, 8562153600, 159826867200, 3116623910400, 63465795993600, 1348648164864000, 29877743960064000, 689322235650048000, 16543733655601152000, 412559358036553728000, 10678006913887272960000, 286526518855975157760000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..100

Index entries for sequences related to Laguerre polynomials

FORMULA

E.g.f.: (1+15*x+30*x^2+10*x^3)/(1-x)^9.

a(n) = A062139(n+3, 3).

a(n) = (n+3)!*binomial(n+5, 5)/3!.

If we define f(n,i,x)= Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-3)=(-1)^(n-1)*f(n,3,-6), (n>=3). - Milan Janjic, Mar 01 2009

MATHEMATICA

With[{nn=20}, CoefficientList[Series[(1+15*x+30*x^2+10*x^3)/(1-x)^9, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Mar 02 2018 *)

PROG

(Sage) [binomial(n, 5)*factorial (n-2)/6 for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009

(PARI) { f=2; for (n=0, 100, f*=n + 3; write("b062193.txt", n, " ", f*binomial(n + 5, 5)/6) ) } \\ Harry J. Smith, Aug 02 2009

(PARI) x='x+O('x^30); Vec(serlaplace((1+15*x+30*x^2+10*x^3)/(1-x)^9)) \\ G. C. Greubel, May 11 2018

(MAGMA) [Factorial(n+3)*binomial(n+5, 5)/Factorial(3): n in [0..30]]; // G. C. Greubel, May 11 2018

CROSSREFS

Cf. A001710, A005990, A005461.

Sequence in context: A016326 A287994 A072975 * A016268 A175199 A051546

Adjacent sequences:  A062190 A062191 A062192 * A062194 A062195 A062196

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Jun 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:23 EST 2020. Contains 331975 sequences. (Running on oeis4.)