login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062196
Triangle read by rows, T(n, k) = binomial(n, k)*binomial(n + 2, k).
21
1, 1, 3, 1, 8, 6, 1, 15, 30, 10, 1, 24, 90, 80, 15, 1, 35, 210, 350, 175, 21, 1, 48, 420, 1120, 1050, 336, 28, 1, 63, 756, 2940, 4410, 2646, 588, 36, 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45, 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55
OFFSET
0,3
COMMENTS
Also the coefficient triangle of certain polynomials N(2; m,x) := Sum_{k=0..m} T(m,k)*x^k. The e.g.f. of the m-th (unsigned) column sequence without leading zeros of the generalized (a=2) Laguerre triangle L(2; n+m,m) = A062139(n+m,m), n >= 0, is N(2; m,x)/(1-x)^(3+2*m), with the row polynomials N(2; m,x).
FORMULA
T(m, k) = [x^k]N(2; m, x), with N(2; m, x) = ((1-x)^(3+2*m))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+3))).
N(2; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+2-j)!/((m+2)!*(m-j)!)*(x^(m-j)))*(1-x)^j).
T(n,m) = binomial(n, m)*(binomial(n+1, m) + binomial(n+1, m-1)). - Vladimir Kruchinin, Apr 06 2018
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 3;
[2] 1, 8, 6;
[3] 1, 15, 30, 10;
[4] 1, 24, 90, 80, 15;
[5] 1, 35, 210, 350, 175, 21;
[6] 1, 48, 420, 1120, 1050, 336, 28;
[7] 1, 63, 756, 2940, 4410, 2646, 588, 36;
[8] 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45;
[9] 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55.
MAPLE
T := (n, k) -> binomial(n, k)*binomial(n + 2, k);
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Sep 30 2021
CROSSREFS
Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), this sequence (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Sequence in context: A258205 A258018 A188939 * A103247 A030523 A207815
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Jun 19 2001
EXTENSIONS
New name by Peter Luschny, Sep 30 2021
STATUS
approved