OFFSET
1,1
COMMENTS
Elements in this sequence can themselves be semiprimes. a(1) = 4 = 2^2. a(2) = 10 = 2 * 5. a(6) = 58 = 2 * 29. a(11) = 185 = 5 * 37. a(12) = 219 = 3 * 73. a(13) = 254 = 2 * 127. a(16) = 377 = 13 * 29. a(20) = 589 = 19 * 31. Etc. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = Sum_{i=1..n} A001358(i). - R. J. Mathar, Sep 14 2012
EXAMPLE
a(4) = 29 because the sum of the first 4 semiprimes 4+6+9+10 is 29.
MATHEMATICA
Accumulate[Select[Range[200], PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 23 2014 *)
PROG
(PARI) is_A062198(N)={ my(n=0); while(N>0, while(bigomega(n++)!=2, ); N-=n); !N} \\ - M. F. Hasler, Sep 23 2012
(PARI) A062198(n, list)={my(s=0, N=0); until(!n--, until(bigomega(N++)==2, ); s+=N; list & print1(s", ")); s} \\ - M. F. Hasler, Sep 23 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Shyam Sunder Gupta, Aug 24 2003
STATUS
approved