The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062200 Number of compositions of n such that two adjacent parts are not equal modulo 2. 10
1, 1, 1, 3, 2, 6, 6, 11, 16, 22, 37, 49, 80, 113, 172, 257, 377, 573, 839, 1266, 1874, 2798, 4175, 6204, 9274, 13785, 20577, 30640, 45665, 68072, 101393, 151169, 225193, 335659, 500162, 745342, 1110790, 1655187, 2466760, 3675822, 5477917, 8163217, 12164896, 18128529, 27015092 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also (0,1)-strings such that all maximal blocks of 1's have even length and all maximal blocks of 0's have odd length.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problems 2.4.3, 2.4.13).
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 19.
FORMULA
a(n) = Sum_{j=0..n+1} binomial(n-j+1, 3*j-n+1).
a(n) = 2*a(n-2) + a(n-3) - a(n-4).
G.f.: -(x^2-x-1)/(x^4-x^3-2*x^2+1). More generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).
G.f.: W(0)/(2*x^2) -1/x^2, where W(k) = 1 + 1/(1 - x*(k - x)/( x*(k+1 - x) - 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
EXAMPLE
From Joerg Arndt, Oct 27 2012: (Start)
The 11 such compositions of n=7 are
[ 1] 1 2 1 2 1
[ 2] 1 6
[ 3] 2 1 4
[ 4] 2 3 2
[ 5] 2 5
[ 6] 3 4
[ 7] 4 1 2
[ 8] 4 3
[ 9] 5 2
[10] 6 1
[11] 7
The 16 such compositions of n=8 are
[ 1] 1 2 1 4
[ 2] 1 2 3 2
[ 3] 1 2 5
[ 4] 1 4 1 2
[ 5] 1 4 3
[ 6] 1 6 1
[ 7] 2 1 2 1 2
[ 8] 2 1 2 3
[ 9] 2 1 4 1
[10] 2 3 2 1
[11] 3 2 1 2
[12] 3 2 3
[13] 3 4 1
[14] 4 1 2 1
[15] 5 2 1
[16] 8
(End)
MATHEMATICA
LinearRecurrence[{0, 2, 1, -1}, {1, 1, 1, 3}, 50] (* Harvey P. Dale, Feb 26 2012 *)
Join[{1}, Table[Sum[ Binomial[n-j+1, 3j-n+1], {j, 0, n-1}], {n, 50}]] (* Harvey P. Dale, Feb 26 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(-(x^2-x-1)/(x^4-x^3-2*x^2+1)) \\ Joerg Arndt, May 13 2013
CROSSREFS
Sequence in context: A154028 A157793 A096375 * A114208 A014686 A053090
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Jun 13 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 21:47 EDT 2024. Contains 372720 sequences. (Running on oeis4.)