login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062197
Row sums of signed triangle A062139 (generalized a=2 Laguerre).
2
1, 2, 5, 14, 37, 34, -887, -14050, -168919, -1916542, -21607859, -245387858, -2799384755, -31558843486, -337767590383, -3063846770626, -11912361112367, 477367592119810, 21032925955607701, 627398853149961038, 16703816669710968821
OFFSET
0,2
FORMULA
E.g.f.: exp(-x/(1-x))/(1-x)^3.
a(n) = Sum_{m=0..n} ((-1)^m)*n!*binomial(n+2, n-m)/m!.
a(n) = 2*n*a(n-1) - (n-1)*(n+1)*a(n-2). - Vaclav Kotesovec, Aug 01 2013
a(n) = (n+2)!*hypergeom([-n],[3],1)/2. - Peter Luschny, Apr 11 2015
MAPLE
a := n -> (n+2)!*hypergeom([-n], [3], 1)/2:
seq(simplify(a(n)), n=0..20); # Peter Luschny, Apr 11 2015
MATHEMATICA
Table[n!*LaguerreL[n, 2, 1], {n, 0, 20}] (* Vaclav Kotesovec, Aug 01 2013 *)
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, (-1)^k*binomial(n+2, n-k)/k!), ", ")) \\ G. C. Greubel, May 13 2018
(PARI) a(n) = vecsum(Vec(n!*pollaguerre(n, 2))); \\ Michel Marcus, Feb 06 2021
(Magma) [Factorial(n)*(&+[(-1)^k*Binomial(n+2, n-k)/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 13 2018
CROSSREFS
Cf. A062139.
Sequence in context: A363106 A005955 A186903 * A030016 A248733 A099485
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved