This site is supported by donations to The OEIS Foundation.
Index to OEIS: Section La
Index to OEIS: Section La
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]
L-series: A007653, A046113
L.C.M.: see entries under LCM
labeled partitions: see also under partitions
lacing a shoe , sequences related to :
- lacing a shoe: A078601, A078629, A078674, A078602, A078675, A078676, A078698, A078700, A078702, A079410, A072503, A002866
- lacing a shoe: see also A002816, A078603, A078628, A078673
Laguerre polynomials, sequences related to :
- Laguerre polynomials, A021009*, A021010, A021012
- Laguerre polynomials, columns: A001805-A001807, A001809-A001812
- Laguerre polynomials, generalized, columns: A061206, A062141-A062144, A062148-A062152, A062193-A062195, A062199, A062260-A062263
- Laguerre polynomials, generalized, row sums: A062146, A062147, A062191, A062192, A062197, A062198, A062265, A062266, A066668
- Laguerre polynomials, generalized: A062137-A062140, A066667
- Laguerre polynomials, row sums: A009940*
- Laguerre polynomials: see also A025166
Lah numbers, sequences related to :
- Lah numbers, triangle of: A008297*
- Lah numbers: A001286, A001754, A001755, A001777, A001778
- Lah numbers: see also (1) A000262, A035342, A035342, A035469, A035469, A046089, A048897, A049029, A049029, A049352, A049353, A049374
- Lah numbers: see also (2) A049385, A049385, A049403, A049404, A049410, A049411, A049424
LambertW function, sequences related to :
- LambertW function: A001662, A051711, A058955, A058956, A013703, A030178, A030179, A052807, A052880, A005172, A030797
laminated lattices, sequences related to :
- laminated lattices, determinants of: A028921*
- laminated lattices, kissing numbers of: A002336*, A028924*
- laminated lattices, numbers of: A005135*
- laminated lattices, theta series of (1): A000122, A004016, A004015, A004011, A005930, A004007, A004008, A004009, A005933, A006909, A006910, A006911, A006912, A006913
- laminated lattices, theta series of (2): A006914, A006915, A006916, A006917, A023937, A023938, A023939, A023940, A023941, A023942, A023943, A023944, A023945, A024211
Landau approximation: A000690
Landau's function g(n): A000793*
Langford pairings: see Langford-Skolem problem of arranging 11223344...nn.
Langford-Skolem problem of arranging 11223344...nn: A014552, A192289, A050998, A059106, A059107, A059108, A176127, A193564
language, words in a certain: A000802, A005819, A007055, A007056, A007057, A007058, A036995
largest factors , sequences related to :
- largest factors of various numbers: (1) A002582, A002583, A002584, A002585, A002587, A002588, A002590, A002591, A002592, A003020, A003021, A005420
- largest factors of various numbers: (2) A005422, A006486, A007571 [this list needs to be extended]
largest prime dividing n: A006530*, A070087, A070089
last digits: see final digits
last occurrence: A001463
Latin (the language): A132984
Latin (the language): see also A132204
Latin cubes, rectangles and squares, sequences related to :
- Latin cubes: A098843, A098846, A098679, A099321
- Latin rectangles: A000186, A000512, A000513, A000516, A000536, A000573, A000576, A001009, A001568, A001623, A001624, A001625, A001626, A001627, A003170
- Latin squares, mutually orthogonal: A001438*
- Latin squares, number of: A000315* (reduced), A002860*, A003090*, A040082*, A003191, A123234
- Latin squares, diagonal and pandiagonal: A123565, A274171, A274806, A287644, A287645, A287647, A287648, A287649, A287650, A287651, A287695, A287761, A287762, A287764, A292516, A292517, A293777, A293778, A299783, A299784, A299785, A299787, A305568, A305569, A305570, A305571, A307163, A307164, A307166, A307167, A307170, A307171, A309210, A309283, A309598, A309599, A329685, A330391, A333366, A333367, A333671, A337302, A337303, A337309, A338084, A338250, A338562, A339305, A339641, A339999, A340186, A340545, A340546, A340550, A341585
- Latin squares, see also A000519, A000611, A001070, A019570, A019585
- Latin squares, see also Latin rectangles
- Latin squares: see also Latin rectangles, quasigroups
Latin: see also Index entries for sequences related to number of letters in n
lattice , sequences related to :
- lattice : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
- lattice points in various regions:: A000036, A000092, A000099, A000223, A000323, A000328, A000413, A000605
- lattice, extremal in dimension 72: A004675*
- lattices : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
- lattices, by determinant: A005134, A005138, A005139, A005140, A054907, A054908, A054909, A054911
- Lattices, distributive:: A006982, A006356, A006357, A006358, A006359, A006360, A006361, A006363, A006362
- lattices, eutactic: A037075, A065536
- Lattices, examples of ("meet" and "join" paired): A004198-A003986, A003989-A003990, A082858-A082860
- lattices, extreme: A033689*
- lattices, Green's function for:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281
- Lattices, labeled: A055512*, A058164, A058165, A058803-A058805
- lattices, laminated: A005135*
- lattices, laminated: see also under laminated lattices
- lattices, minimal determinant of:: A005102, A005103, A005104
- lattices, minimal norm of: see minimal norm
- Lattices, modular: A006981*
- lattices, orthogonal: A007669
- lattices, paths on:: A006191, A006318, A006189, A006192, A006319, A006320, A006321
- lattices, perfect: A004026*, A065535
- lattices, polygons on:: A002931, A006781, A006782, A006772, A006783, A006773
- lattices, polymers on:: A007290, A007291
- lattices, see also under: sublattices
- lattices, spin-wave coefficients: A003303
- lattices, unimodular and even: A054909*
- lattices, unimodular and odd: A054911*, A054908
- lattices, unimodular, minimal norm of: A005136*
- lattices, unimodular: A005134*, A054907
- Lattices, vertically indecomposable: A058800*, A058801, A058802, A058803*, A058804, A058805
- lattices, walks on:: see walks
- Lattices: A006966* (unlabeled); A055512* (labeled)
- lattices: see also hexagonal close-packing, etc.
- lattices: see also A2 lattice
- lattices: see also b.c.c. lattice
- lattices: see also Barnes-Wall lattices
- lattices: see also f.c.c. lattice
- lattices: see also under L_infinity norms
- Lattices: see also under posets
Lazy Caterer sequence: A000124*
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]