This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052807 A simple grammar. 3
 0, 1, 3, 17, 146, 1704, 25284, 456224, 9702776, 237711888, 6593032560, 204212077992, 6986942528400, 261700394006232, 10650713784774504, 468007296229553880, 22083086552247101184, 1113646609708909274880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS E.g.f. of A052813 equals exp(A(x)) = -A(x)/log(1-x). a(n) = n!*Sum_{k=0..n-1} A052813(k)/k!/(n-k). - Paul D. Hanna, Jul 19 2006 LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 769 FORMULA E.g.f.: -LambertW(-ln(-1/(-1+x))) a(n) = Sum_{k=1..n} |Stirling1(n, k)|*k^(k-1). - Vladeta Jovovic, Sep 17 2003 E.g.f. satisfies: A(x) = 1/(1-x)^A(x). - Paul D. Hanna, Jul 19 2006 EXAMPLE E.g.f.: A(x) = x + 3*x^2/2! + 17*x^3/3! + 146*x^4/4! +... A(x)/exp(A(x)) = -log(1-x) = x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 +... MAPLE spec := [S, {B=Cycle(Z), C=Set(S), S=Prod(C, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/(1-x+x*O(x^n))^A); n!*polcoeff(log(A), n)} - Paul D. Hanna, Jul 19 2006 CROSSREFS Cf. A052813 (exp(A(x)). Sequence in context: A015735 A140983 A138013 * A080253 A009813 A213507 Adjacent sequences:  A052804 A052805 A052806 * A052808 A052809 A052810 KEYWORD easy,nonn,changed AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .