login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138013 E.g.f. satisfies: A(x) = 1 - log(1 - x*A(x)). 2
1, 1, 3, 17, 146, 1694, 24834, 440586, 9180800, 219829536, 5948287560, 179508872520, 5978006444112, 217772950035120, 8614798644364080, 367768502385434640, 16852524904388586240, 825075552824125305600, 42981992589364756939008, 2373967488394457834095872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = A038037(n+1)/(n+1) for n>=0 where A038037(n) is the number of labeled rooted compound windmills (mobiles) with n nodes.

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: A(x) = (1/x)*Series_Reversion[ x/(1 - log(1-x)) ].

E.g.f.: A(x) = 1 + Series_Reversion( (1-exp(-x))/(1+x) ).

E.g.f. A(x) satisfies: exp(1 - A(x)) = 1 - x*A(x).

a(n) ~ sqrt(-1-LambertW(-1,-exp(-2))) * (-LambertW(-1,-exp(-2)))^n * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013

a(n) = sum(n!/(n+1-k)! * |stirling1(n,k)|, k=0..n). - Michael D. Weiner, Dec 23 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 3x^2/2! + 17x^3/3! + 146x^4/4! + 1694x^5/5! + ...

where A(x) = 1 - log(1 - x*A(x)):

A(x) = 1 + x*A(x) + x^2*A(x)^2/2 + x^3*A(x)^3/3 +...+ x^n*A(x)^n/n +...

MATHEMATICA

CoefficientList[1 + InverseSeries[Series[(1-E^(-x))/(1+x), {x, 0, 20}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)

PROG

(PARI) {a(n)=n!*polcoeff(1/x*serreverse(x/(1-log(1-x + x*O(x^n) ))), n+1)}

(PARI) {a(n)=n!*polcoeff(1 + serreverse((1-exp(-x+x^2*O(x^n)))/(1+x +x*O(x^n))), n)}

CROSSREFS

Cf. A038037.

Sequence in context: A140983 A241805 A277466 * A052807 A080253 A234289

Adjacent sequences:  A138010 A138011 A138012 * A138014 A138015 A138016

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:31 EST 2020. Contains 338781 sequences. (Running on oeis4.)