login
A368233
Expansion of e.g.f. 1/(1 - 2*x - log(1 + x)).
2
1, 3, 17, 146, 1668, 23834, 408614, 8173248, 186836952, 4804906656, 137297982672, 4315550336448, 147977856835440, 5496919791479856, 219900767818247952, 9425346313165808064, 430919959212816772608, 20932680398362302305664
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 2*n*a(n-1) + Sum_{k=1..n} (-1)^(k-1) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=2*i*v[i]+sum(j=1, i, (-1)^(j-1)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
Cf. A001792.
Sequence in context: A290579 A140983 A241805 * A277466 A138013 A052807
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 18 2023
STATUS
approved