OFFSET
0,5
COMMENTS
Used for getting strong canonical forms (SCFs) of the diagonal Latin squares and for fast enumerating of the diagonal Latin squares based on equivalence classes.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..100
S. Kochemazov, O. Zaikin, E. Vatutin E., and A. Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, Journal of Integer Sequences. Vol. 23. Iss. 1. 2020. Article 20.1.2.
E. I. Vatutin, About the number of X-based fillings of diagonals in a diagonal Latin squares of orders 1-15 (in Russian).
E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
FORMULA
a(n) = A337302(n)*n!.
a(n) = n!*A000316(floor(n/2)). - Andrew Howroyd, Mar 26 2023
EXAMPLE
One of the 96 X-based fillings of diagonals of a diagonal Latin square for order n=4:
1 . . 0
. 0 1 .
. 3 2 .
2 . . 3
PROG
(PARI) \\ here b(n) is A000459.
b(n) = {sum(m=0, n, sum(k=0, n-m, (-1)^k * binomial(n, k) * binomial(n-k, m) * 2^(2*k+m-n) * (2*n-2*m-k)! )); }
a(n) = {2^(n\2) * b(n\2) * n!} \\ Andrew Howroyd, Mar 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Eduard I. Vatutin, Aug 22 2020
EXTENSIONS
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Mar 26 2023
STATUS
approved