
LINKS

Table of n, a(n) for n=1..9.
S. E. Kochemazov, E. I. Vatutin, O. S. Zaikin, Fast Algorithm for Enumerating Diagonal Latin Squares of Small Order, arXiv:1709.02599 [math.CO], 2017.
E. I. Vatutin, O. S. Zaikin, A. D. Zhuravlev, M. O. Manzuk, S. E. Kochemazov and V. S. Titov, Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. Proceedings of Distributed Computing and gridtechnologies in science and education (GRID'16), JINR, Dubna, 2016, pp. 114115.
Vatutin E. I., Zaikin O. S., Zhuravlev A. D., Manzuk M. O., Kochemazov S. E., Titov V. S., The effect of filling cells order to the rate of generation of diagonal Latin squares. Informationmeasuring and diagnosing control systems (Diagnostics  2016). Kursk: SWSU, 2016. pp. 3339. (in Russian)
E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154157. (in Russian)
Eduard I. Vatutin, a(9) value fixed after
Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S., Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Gridtechnologies in Science and Education. 2017. Vol. 1787. pp. 486490. urn:nbn:de:007417875.
Index entries for sequences related to Latin squares and rectangles
