login
A234083
T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock having the sum of the absolute values of all six edge and diagonal differences equal to 10 (10 maximizes T(1,1))
9
96, 476, 476, 2352, 2900, 2352, 12152, 18048, 18048, 12152, 63136, 122532, 139512, 122532, 63136, 335536, 849760, 1219868, 1219868, 849760, 335536, 1789760, 6162980, 10952176, 14098264, 10952176, 6162980, 1789760, 9652704, 45072784
OFFSET
1,1
COMMENTS
Table starts
......96.......476........2352........12152..........63136..........335536
.....476......2900.......18048.......122532.........849760.........6162980
....2352.....18048......139512......1219868.......10952176.......105917092
...12152....122532.....1219868.....14098264......167360104......2200773076
...63136....849760....10952176....167360104.....2595084608.....45902295216
..335536...6162980...105917092...2200773076....45902295216...1118287561704
.1789760..45072784..1033754752..29189609288...812052658856..27031988237608
.9652704.336800596.10502679784.411909391600.15766466760808.737597105103228
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) +22*a(n-2) -56*a(n-3) -120*a(n-4) +32*a(n-5) +64*a(n-6)
k=2: [order 26]
k=3: [order 97]
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..2..0....0..0..0..2..3....0..3..0..3..0....0..0..2..4..4
..1..3..0..3..1....1..3..1..3..0....0..1..0..1..0....1..3..1..3..1
..4..2..1..2..0....0..0..0..2..3....2..3..0..3..2....0..2..4..2..0
..1..1..4..1..3....3..1..3..1..0....4..1..0..1..4....1..3..1..3..3
CROSSREFS
Sequence in context: A233811 A233717 A233710 * A234076 A337303 A216372
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 19 2013
STATUS
approved