This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003301 Numerators of coefficients of Green function for cubic lattice. (Formerly M1907) 1
 1, 2, 8, 496, 9088, 12032, 12004352, 4139008, 51347456, 378357612544, 4097254359040, 2921482158080, 9353679601664, 4929181267787776, 5689554887507968, 41627810786525052928, 37882178449895849984 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. S. Joyce and R. T. Delves, Exact product forms for the simple cubic lattice Green function: I, J Phys A: Math Gen 37 (2004) 3645-3671 FORMULA 9(n+1)(2n+1)(2n+3)*a(n+1)/A003302(n+1)-2(2n+1)(10n^2+10n+3)a(n)/A003302(n)+4n^3*a(n-1)/A003302(n-1) = 0. - R. J. Mathar, Dec 08 2005 MAPLE Dnminus1 := 1 : print(numer(Dnminus1)) ; Dn := 2/9 : print(numer(Dn)) ; for nplus1 from 2 to 20 do n := nplus1-1 : Dnplus1 := (2*(2*n+1)*(10*n^2+10*n+3)*Dn-4*n^3*Dnminus1)/(9*nplus1*(2*n+1)*(2*n+3)) : print(numer(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar CROSSREFS Cf. A003302. Sequence in context: A009808 A035129 A284603 * A000890 A033542 A098870 Adjacent sequences:  A003298 A003299 A003300 * A003302 A003303 A003304 KEYWORD nonn,easy,frac AUTHOR EXTENSIONS More terms from R. J. Mathar, Dec 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 15:57 EST 2019. Contains 319364 sequences. (Running on oeis4.)