This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030178 Decimal expansion of LambertW(1): the solution to x*exp(x) = 1. 36
 5, 6, 7, 1, 4, 3, 2, 9, 0, 4, 0, 9, 7, 8, 3, 8, 7, 2, 9, 9, 9, 9, 6, 8, 6, 6, 2, 2, 1, 0, 3, 5, 5, 5, 4, 9, 7, 5, 3, 8, 1, 5, 7, 8, 7, 1, 8, 6, 5, 1, 2, 5, 0, 8, 1, 3, 5, 1, 3, 1, 0, 7, 9, 2, 2, 3, 0, 4, 5, 7, 9, 3, 0, 8, 6, 6, 8, 4, 5, 6, 6, 6, 9, 3, 2, 1, 9, 4, 4, 6, 9, 6, 1, 7, 5, 2, 2, 9, 4, 5, 5, 7, 6, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sometimes called the Omega constant. The first 58 digits form a prime: 5671432904097838729999686622103555497538157871865125081351. - Jonathan Vos Post, Nov 09 2004 LambertW(n)/n, n=1,2,3,4,5,..., can be calculated with the same recurrence as for the numerators in Dirichlet series for logarithms of n using tetration. Convergence is slow for large numbers. See Mathematica program for recurrence. Tetration appears to work also for LambertW(n*(complex number))/n, n=1,2,3,4,5,... See link to mathematics stackexchange. (Conjecture.) - Mats Granvik, Oct 19 2013 Infinite power tower for c = 1/E, i.e., c^c^c^..., where c = 1/A068985. - Stanislav Sykora, Nov 03 2013 Notice the narrow interval exp(-gamma) < w(1) < gamma, with gamma = A001620. - Jean-François Alcover, Dec 18 2013 Also the solution to x = -log(x). - Robert G. Wilson v, Feb 22 2014 REFERENCES Stanislav Sykora, Fixed points of the mappings exp(z) and -exp(z) in C, http://www.ebyte.it/library/docs/math16/2016_MATH_Sykora_FixedPointsExp.pdf; DOI: 10.3247/SL6Math16.002, 2016. LINKS G. C. Greubel and Stanislav Sykora, Table of n, a(n) for n = 0..10000 (terms 0..1999 from Stanislav Sykora) blackpenredpen, Finding Omega, featuring Newton's method, video (2018) Daniel Cummerow, Sound of Mathematics, Constants. Mats Granvik, LambertW(k)/k by tetration for natural numbers Simon Plouffe, Lambert W(1, 0) Simon Plouffe, The omega constant or W(1) Michael A. Sherbon, "Fine-Structure Constant from Golden Ratio Geometry", International Journal of Mathematics and Physical Sciences Research (2018) Vol. 5, Issue 2, pp. 89-100. Eric Weisstein's World of Mathematics, Omega Constant Eric Weisstein's World of Mathematics, Lambert W-Function FORMULA 1/A030797. EXAMPLE 0.5671432904097838729999686622103555497538157871865125081351310792230457930866... MAPLE evalf(LambertW(1)); MATHEMATICA RealDigits[ ProductLog[1], 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *) PROG (PARI) solve(x=0, 1, x*exp(x)-1) \\ Charles R Greathouse IV, Mar 20 2012 (PARI) lambertw(1) \\ Stanislav Sykora, Nov 03 2013 CROSSREFS Cf. A019474, A059526, A059527. Cf. A276759 (another fixed point of -exp(z)). Sequence in context: A081820 A214681 A019978 * A038458 A284361 A267017 Adjacent sequences:  A030175 A030176 A030177 * A030179 A030180 A030181 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 21:12 EDT 2018. Contains 315425 sequences. (Running on oeis4.)