This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000036 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); A000099 gives values of n where |P(n)| sets a new record; sequence gives closest integer to P(A000099(n)). (Formerly M0610 N0221) 7
 2, 3, 5, 6, 6, -6, 7, 8, 10, 13, 13, 13, 14, -17, 17, 17, 18, -19, 20, -22, 23, 27, -29, -29, 29, -31, -32, -35, 36, -37, -40, -43, -46, -48, -50, -53, -55, -57, -60, -60, -61, -63, -66, -66, -68, -71, -74, -77, -79, -82, -85, -88, -89, -92, -95, -96, -97, -97, -100 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS David W. Wilson, Table of n, a(n) for n = 1..200 W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310. FORMULA a(n) = round(P(A000099(n))), where P(n) = A057655(n)-pi*n. - David W. Wilson, May 15 2008 MATHEMATICA nmax = 6*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]] + 1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000036 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[pn = P[n]]; If[p > record, record = p; k++; Sow[pn // Round]; Print["a(", k, ") = ", pn // Round]]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *) CROSSREFS Cf. A000092, A000099, A000223, A000323, A000413. Sequence in context: A001600 A175578 A316609 * A165081 A165089 A165083 Adjacent sequences:  A000033 A000034 A000035 * A000037 A000038 A000039 KEYWORD sign AUTHOR EXTENSIONS Revised by N. J. A. Sloane, Jun 26 2005 More terms from David W. Wilson, May 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 20:24 EST 2018. Contains 318023 sequences. (Running on oeis4.)