
REFERENCES

J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177184.
R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22.
A. Hulpke, P. Kaski and P. R. J. Ostergard, The number of Latin squares of order 11, Preprint, 2009.
G. Kolesova, C. W. H. Lam and L. Thiel, On the number of 8x8 Latin squares, J. Combin. Theory,(A) 54 (1990) 143148.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 9899.


LINKS

Table of n, a(n) for n=1..11.
B. D. McKay, Latin Squares (has list of all such squares)
B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98119.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
Eric Weisstein's World of Mathematics, Latin Square
Index entries for sequences related to Latin squares and rectangles


EXTENSIONS

7 X 7 and 8 X 8 results confirmed by Brendan McKay
Beware: erroneous versions of this sequence can be found in the literature!
Two more terms (from the McKayMeynertMyrvold article) from Richard Bean (rwb(AT)eskimo.com), Feb 17 2004
There are 12216177315369229261482540 isotopy classes of Latin squares of order 11.  Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009
