
REFERENCES

Alter, Ronald. Research Problems: How Many Latin Squares are There? Amer. Math. Monthly 82 (1975), no. 6, 632634. MR1537769
S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 9395.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, SOME PROPERTIES OF LATIN SQUARES, http://ccom.uprrp.edu/~labemmy/Wordpress/wpcontent/uploads/2010/11/4_Presentation_SomePropertiesofLatinSquares_March2009.pdf
J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177184.
Gilbert, E. N. Latin squares which contain no repeated digrams. SIAM Rev. 7 1965 189198. MR0179095 (31 #3346). Mentions this sequence.  N. J. A. Sloane, Mar 15 2014
Jucys, A.A. A. The number of distinct Latin squares as a grouptheoretical constant. J. Combinatorial Theory Ser. A 20 (1976), no. 3, 265272. MR0419259 (54 #7283)
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004. http://cs.anu.edu.au/~bdm/papers/ls11.pdf
Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204215.
M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 9899.
