This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002860 Number of Latin squares of order n; or labeled quasigroups.
(Formerly M2051 N0812)
1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800, 5524751496156892842531225600, 9982437658213039871725064756920320000, 776966836171770144107444346734230682311065600000 (list; graph; refs; listen; history; text; internal format)



Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.

H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


Table of n, a(n) for n=1..11.

Ronald Alter, Research Problems: How Many Latin Squares are There?, Amer. Math. Monthly 82 (1975), no. 6, 632--634. MR1537769

S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 93-95.

Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, Laboratorio Emmy Noether, 2009.

J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177-184.

E. N. Gilbert, Latin squares which contain no repeated digrams, SIAM Rev. 7 1965 189--198. MR0179095 (31 #3346). Mentions this sequence. - N. J. A. Sloane, Mar 15 2014

A.-A. A. Jucys, The number of distinct Latin squares as a group-theoretical constant, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 265--272. MR0419259 (54 #7283)

B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.

B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004.

B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.

J. Shao and W. Wei, A formula for the number of Latin squares., Discrete Mathematics 110 (1992) 293-296.

T. Sillke, How many Latin Squares of order-N are there?

D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.

D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.

Eric Weisstein's World of Mathematics, Latin Square.

M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 98-99.

Krasimir Yordzhev, The bitwise operations in relation to obtaining Latin squares, arXiv preprint arXiv:1605.07171 [cs.OH], 2016.

Index entries for sequences related to Latin squares and rectangles

Index entries for sequences related to quasigroups


a(n) = n!*A000479(n) = n!*(n-1)!*A000315(n).


Cf. A000315, A000479.

Cf. A003090, A040082, A057991.

Cf. A098679 (Latin cubes).

A row of the array in A249026.

Sequence in context: A264952 A050643 A145513 * A108078 A052129 A216335

Adjacent sequences:  A002857 A002858 A002859 * A002861 A002862 A002863




N. J. A. Sloane.


One more term (from the McKay-Wanless article) from Richard Bean (rwb(AT)eskimo.com), Feb 17 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 20 08:40 EDT 2017. Contains 292261 sequences.