This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002860 Number of Latin squares of order n; or labeled quasigroups.
(Formerly M2051 N0812)
1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800, 5524751496156892842531225600, 9982437658213039871725064756920320000, 776966836171770144107444346734230682311065600000 (list; graph; refs; listen; history; text; internal format)



Alter, Ronald. Research Problems: How Many Latin Squares are There? Amer. Math. Monthly 82 (1975), no. 6, 632--634. MR1537769

S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 93-95.

Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, SOME PROPERTIES OF LATIN SQUARES, http://ccom.uprrp.edu/~labemmy/Wordpress/wp-content/uploads/2010/11/4_Presentation_Some-Properties-of-Latin-Squares_March2009.pdf

J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), 177-184.

Gilbert, E. N. Latin squares which contain no repeated digrams. SIAM Rev. 7 1965 189--198. MR0179095 (31 #3346). Mentions this sequence. - N. J. A. Sloane, Mar 15 2014

Jucys, A.-A. A. The number of distinct Latin squares as a group-theoretical constant. J. Combinatorial Theory Ser. A 20 (1976), no. 3, 265--272. MR0419259 (54 #7283)

B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004. http://cs.anu.edu.au/~bdm/papers/ls11.pdf

Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.

H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.

D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.

M. B. Wells, The number of Latin squares of order 8, J. Combin. Theory, 3 (1967), 98-99.


Table of n, a(n) for n=1..11.

B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.

B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.

T. Sillke, How many Latin Squares of order-N are there?

Eric Weisstein's World of Mathematics, Latin Square.

Index entries for sequences related to Latin squares and rectangles

Index entries for sequences related to quasigroups


Equals n!*A000479(n) = n!*(n-1)!*A000315(n). Cf. A003090, A040082, A057991.

Cf. A098679 (Latin cubes).

A row of the array in A249026.

Sequence in context: A264952 A050643 A145513 * A108078 A052129 A216335

Adjacent sequences:  A002857 A002858 A002859 * A002861 A002862 A002863




N. J. A. Sloane.


One more term (from the McKay-Wanless article) from Richard Bean (rwb(AT)eskimo.com), Feb 17 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 30 06:04 EST 2015. Contains 264666 sequences.