This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098679 Total number of Latin cubes of order n. 5
 1, 2, 24, 55296, 2781803520, 994393803303936000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03, 2004 REFERENCES T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office. T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan,Japan Patent Office. Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724. B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22, (2008) 719-736. Mullen, Gary L.; and Weber, Robert E., Latin cubes of order <= 5, Discrete Math. 32 (1980), no. 3, 291-297. (Gives a(1)-a(5).) D. A. Preece, S. C. Pearce and J. R. Kerr: Orthogonal designs for three-dimensional experiments, Biometrika 60 (1973), 349-358. LINKS FORMULA Equals n!*(n-1)!*(n-1)!*A098843. CROSSREFS Cf. A098843, A098846, A099321. Sequence in context: A137888 A108349 A000722 * A123851 A120122 A068943 Adjacent sequences:  A098676 A098677 A098678 * A098680 A098681 A098682 KEYWORD hard,nonn,nice AUTHOR N. J. A. Sloane, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 06 2004 EXTENSIONS a(6) computed independently by Brendan McKay and Ian Wanless. Dec 17 2004. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .