
REFERENCES

S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 9395.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, http://ccom.uprrp.edu/~labemmy/Wordpress/wpcontent/uploads/2010/11/4_Presentation_SomePropertiesofLatinSquares_March2009.pdf
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 183.
J. Denes, A. D. Keedwell, editors, Latin Squares: new developments in the theory and applications, Elsevier, 1991, pp. 1, 388.
R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22.
Gilbert, E. N. Latin squares which contain no repeated digrams. SIAM Rev. 7 1965 189198. MR0179095 (31 #3346). Mentions this sequence.  N. J. A. Sloane, Mar 15 2014
B. D. McKay and I. M. Wanless, Latin squares of order eleven. Preprint 2004. http://cs.anu.edu.au/~bdm/papers/ls11.pdf
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004. http://cs.anu.edu.au/~bdm/papers/ls11.pdf
C. R. Rao, S. K. Mitra and A. Matthai, editors, Formulae and Tables for Statistical Work. Statistical Publishing Society, Calcutta, India, 1966, p. 193.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, pp. 37, 53.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204215.
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 240.
