
REFERENCES

S. E. Bammel and J. Rothstein, The number of 9x9 Latin squares, Discrete Math., 11 (1975), 9395.
Jeranfer Bermúdez, Richard García, Reynaldo López and Lourdes Morales, Some Properties of Latin Squares, http://ccom.uprrp.edu/~labemmy/Wordpress/wpcontent/uploads/2010/11/4_Presentation_SomePropertiesofLatinSquares_March2009.pdf
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 183.
J. Denes, A. D. Keedwell, editors, Latin Squares: new developments in the theory and applications, Elsevier, 1991, pp. 1, 388.
R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22.
Gilbert, E. N. Latin squares which contain no repeated digrams. SIAM Rev. 7 1965 189198. MR0179095 (31 #3346). Mentions this sequence.  N. J. A. Sloane, Mar 15 2014
B. D. McKay and I. M. Wanless, On the number of Latin squares. Preprint 2004. http://cs.anu.edu.au/~bdm/papers/ls11.pdf
C. R. Rao, S. K. Mitra and A. Matthai, editors, Formulae and Tables for Statistical Work. Statistical Publishing Society, Calcutta, India, 1966, p. 193.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, pp. 37, 53.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. S. Stones, The many formulae for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204215.
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 240.


LINKS

Table of n, a(n) for n=1..11.
B. Cherowitzo, Comb. Structures Lecture Notes
B. D. McKay, A. Meynert and W. Myrvold, Small latin squares, quasigroups and loops, J. Combin. Designs, vol. 15, no. 2 (2007) pp. 98119.
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron. J. Combinatorics, 2 (1995) #N3.
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335344.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Eric Weisstein's World of Mathematics, Latin Square.
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237240]
Index entries for sequences related to Latin squares and rectangles
Index entries for sequences related to quasigroups
