login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000479 Number of 1-factorizations of K_{n,n}. 9
1, 1, 1, 2, 24, 1344, 1128960, 12198297600, 2697818265354240, 15224734061278915461120, 2750892211809148994633229926400, 19464657391668924966616671344752852992000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also, number of Latin squares of order n with first row 1,2,...,n.

Also number of fixed diagonal Latin squares of order n. - Eric W. Weisstein, Dec 18 2005

Also maximum number of Latin squares of order n such that no two of them have all the same rows (respectively, columns). - Rick L. Shepherd, Mar 01 2008

REFERENCES

CRC Handbook of Combinatorial Designs, 1996, p. 660.

Denes and Keedwell, Latin Squares and Applications, Academic Press 1974.

LINKS

Table of n, a(n) for n=0..11.

B. D. McKay, A. Meynert and W. Myrvold, Small Latin Squares, Quasigroups and Loops, J. Combin. Designs 15 (2007), no. 2, 98-119.

B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combinat. 9 (2005) 335-344.

Artur Schaefer, Endomorphisms of The Hamming Graph and Related Graphs, arXiv preprint arXiv:1602.02186, 2016.

D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.

D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.

Eric Weisstein's World of Mathematics, Latin Square

Index entries for sequences related to Latin squares and rectangles

FORMULA

a(n) = A000315(n)*(n-1)! = A002860(n)/n!.

CROSSREFS

Cf. A000315, A000528, A002860.

See A040082 and A264603 for other versions.

Sequence in context: A232310 A028365 A094050 * A181231 A111427 A081955

Adjacent sequences:  A000476 A000477 A000478 * A000480 A000481 A000482

KEYWORD

nonn,hard,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

One more term (from the McKay-Wanless article) from Richard Bean (rwb(AT)eskimo.com), Feb 17 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 14:22 EDT 2017. Contains 287038 sequences.