login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028365 Order of general affine group over GF(2), AGL(n,2). 6
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>0, a(n)=v(n+1)/v(n), where v=A203305 is the Vandermonde determinant of the first n of the numbers -2^j-1; see the Mathematica section. - Clark Kimberling, Jan 01 2012

REFERENCES

J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).

I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..57

Putnam Exam. 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.

FORMULA

a(n) = 2^A000217(n) * A005329(n) = 2^n * A002884(n) = 2^n * n! * A053601(n). - Max Alekseyev, Jun 09 2015

a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam.] - Max Alekseyev, May 18 2007

a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003

MAPLE

A028365 := n->2^n*product(2^n-2^'i', 'i'=0..n-1); # version 1

A028365 := n->product(2^'j'-1, 'j'=1..n)*2^binomial(n+1, 2); # version 2

MATHEMATICA

RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3]- 8a[n-1] a[n-2]^2)/(a[n-2]a[n-3])}, a[n], {n, 20}] (* Harvey P. Dale, Aug 03 2011 *)

(* Next, the connection with Vandermonde determinants *)

f[j_] := 2^(j - 1); z = 15;

v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]

Table[v[n], {n, 1, z}]   (* A203303 *)

Table[v[n + 1]/v[n], {n, 1, z - 1}]  (* A028365 *)

Table[v[n] v[n + 2]/(2*v[n + 1]^2), {n, 1, z - 1}]  (* A171499 *)

(* Clark Kimberling, Jan 01 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, prod(k=1, n, 2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */

CROSSREFS

Cf. A020522.

Sequence in context: A268311 A137887 A232310 * A094050 A000479 A181231

Adjacent sequences:  A028362 A028363 A028364 * A028366 A028367 A028368

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 08:48 EST 2016. Contains 279048 sequences.