login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028365 Order of general affine group over GF(2), AGL(n,2). 4
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>0, a(n)=v(n+1)/v(n), where v=A203305 is the Vandermonde determinant of the first n of the numbers -2^j-1; see the Mathematica section. - Clark Kimberling, Jan 01 2012

REFERENCES

J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).

I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.

LINKS

Table of n, a(n) for n=0..11.

Putnam Exam. 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.

FORMULA

a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam.] - Max Alekseyev, May 18 2007

a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003

MAPLE

A028365 := n->2^n*product(2^n-2^'i', 'i'=0..n-1); # version 1

A028365 := n->product(2^'j'-1, 'j'=1..n)*2^binomial(n+1, 2); # version 2

MATHEMATICA

RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3]- 8a[n-1] a[n-2]^2)/(a[n-2]a[n-3])}, a[n], {n, 20}] (* Harvey P. Dale, Aug 03 2011 *)

(* Next, the connection with Vandermonde determinants *)

f[j_] := 2^(j - 1); z = 15;

v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]

Table[v[n], {n, 1, z}]   (* A203303 *)

Table[v[n + 1]/v[n], {n, 1, z - 1}]  (* A028365 *)

Table[v[n] v[n + 2]/(2*v[n + 1]^2), {n, 1, z - 1}]  (* A171499 *)

(* Clark Kimberling, Jan 01 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, prod(k=1, n, 2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */

CROSSREFS

Cf. A020522.

Sequence in context: A213984 A137887 A232310 * A094050 A000479 A181231

Adjacent sequences:  A028362 A028363 A028364 * A028366 A028367 A028368

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 06:19 EST 2014. Contains 252297 sequences.