This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028364 Triangle T(n,m) = Sum_{k=0..m} Catalan(n-k)*Catalan(k). 25
 1, 1, 2, 2, 3, 5, 5, 7, 9, 14, 14, 19, 23, 28, 42, 42, 56, 66, 76, 90, 132, 132, 174, 202, 227, 255, 297, 429, 429, 561, 645, 715, 785, 869, 1001, 1430, 1430, 1859, 2123, 2333, 2529, 2739, 3003, 3432, 4862, 4862, 6292, 7150, 7810, 8398, 8986, 9646, 10504, 11934, 16796 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS There are several versions of a Catalan triangle: see A009766, A008315, A028364. The subtriangle [1], [2, 3], [5, 7, 9], ..., namely T(N,M-1), for N >= 1, M=1..N, appears as one-point function in the totally asymmetric exclusion process for the parameters alpha=1=beta. See the Derrida et al. and Liggett references given under A067323, where these triangle entries are called T_{N,N+M-1} for the given alpha and beta values. See the row reversed triangle A067323. LINKS Alois P. Heinz, Rows n = 0..140, flattened G. Chatel, V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014, 2015. A. Sapounakis et al., Ordered trees and the inorder transversal, Disc. Math., 306 (2006), 1732-1741. FORMULA T(n,k) = Sum_{j>=0} A039598(k,j)*A039599(n-k,j). - Philippe Deléham, Feb 18 2004 Sum_{k>=0} T(n,k) = A001700(n). T(n,k) = A067323(n,n-k), n >= k >= 0, otherwise 0. - Philippe Deléham, May 26 2005 G.f. for column sequences m >= 0: (-(c(m,x)-1)/x+c(m,x)*c(x))/x^m with the g.f. c(x) of A000108 (Catalan) and c(m,x):=sum(C(k)*x^k,k=0..m) with C(n):=A000108(n). - Wolfdieter Lang, Mar 24 2006 G.f. for column sequences m >= 0 (without leading zeros): c(x)*Sum_{k=0..m} C(m,k)*c(x)^k with the g.f. c(x) of A000108 (Catalan) and C(n,m) is the Catalan triangle A033184(n,m). - Wolfdieter Lang, Mar 24 2006 T(n,n) = T(n,k) + T(n,n-1-k) = A000108(n+1), n > 0, k = 0..floor((n+1)/2). - Yuchun Ji, Jan 09 2019 EXAMPLE Triangle begins    1;    1,  2;    2,  3,  5;    5,  7,  9, 14;   14, 19, 23, 28, 42; MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, add(       expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b((n+1)\$2)): seq(T(n), n=0..10);  # Alois P. Heinz, Nov 28 2015 MATHEMATICA t[n_, k_] = Sum[CatalanNumber[n-j]*CatalanNumber[j], {j, 0, k}]; Flatten[Table[t[n, k], {n, 0, 8}, {k, 0, n}]] (* Jean-François Alcover, Jul 22 2011 *) CROSSREFS Cf. A009766, A039598, A039599, A028377, A028378, A028376. Row sums give A001700. T(2n,n) gives A201205. Sequence in context: A033189 A008507 A318683 * A239482 A280470 A011971 Adjacent sequences:  A028361 A028362 A028363 * A028365 A028366 A028367 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 12:31 EDT 2019. Contains 328026 sequences. (Running on oeis4.)