This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A040081 Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists. 22
 2, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 4, 0, 3, 2, 1, 3, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 3, 1, 2, 0, 7, 0, 1, 3, 4, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 3, 12, 0, 3, 0, 2, 1, 4, 1, 5, 0, 1, 1, 2, 0, 7, 0, 1, 1, 2, 2, 1, 0, 3, 1, 2, 0, 5, 6, 1, 23, 4, 0, 1, 2, 3, 3, 2, 1, 1, 0, 1, 1, 10, 0, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS T. D. Noe and Eric Chen, Table of n, a(n) for n = 1..2292 (first 1000 terms from T. D. Noe) MATHEMATICA Table[m = 0; While[! PrimeQ[n*2^m - 1], m++]; m, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *) PROG (Haskell) a040081 = length . takeWhile ((== 0) . a010051) .                        iterate  ((+ 1) . (* 2)) . (subtract 1) -- Reinhard Zumkeller, Mar 05 2012 (PARI) a(n)=for(k=0, 2^16, if(ispseudoprime(n*2^k-1), return(k))) \\ Eric Chen, Jun 01 2015 CROSSREFS Cf. A038699 (primes obtained), A050412, A052333. Cf. A046069 (for odd n) Cf. A010051, A000079. Sequence in context: A295819 A048105 A176202 * A239393 A256637 A113063 Adjacent sequences:  A040078 A040079 A040080 * A040082 A040083 A040084 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 04:19 EDT 2019. Contains 322237 sequences. (Running on oeis4.)