This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A040081 Riesel problem: a(n) = smallest m >= 0 such that n*2^m-1 is prime, or -1 if no such prime exists. 22
 2, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 4, 0, 3, 2, 1, 3, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 3, 1, 2, 0, 7, 0, 1, 3, 4, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 3, 12, 0, 3, 0, 2, 1, 4, 1, 5, 0, 1, 1, 2, 0, 7, 0, 1, 1, 2, 2, 1, 0, 3, 1, 2, 0, 5, 6, 1, 23, 4, 0, 1, 2, 3, 3, 2, 1, 1, 0, 1, 1, 10, 0, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS T. D. Noe and Eric Chen, Table of n, a(n) for n = 1..2292 (first 1000 terms from T. D. Noe) MATHEMATICA Table[m = 0; While[! PrimeQ[n*2^m - 1], m++]; m, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *) PROG (Haskell) a040081 = length . takeWhile ((== 0) . a010051) .                        iterate  ((+ 1) . (* 2)) . (subtract 1) -- Reinhard Zumkeller, Mar 05 2012 (PARI) a(n)=for(k=0, 2^16, if(ispseudoprime(n*2^k-1), return(k))) \\ Eric Chen, Jun 01 2015 CROSSREFS Cf. A038699 (primes obtained), A050412, A052333. Cf. A046069 (for odd n) Cf. A010051, A000079. Sequence in context: A155103 A048105 A176202 * A239393 A256637 A113063 Adjacent sequences:  A040078 A040079 A040080 * A040082 A040083 A040084 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.