

A001438


Maximal number of mutually orthogonal Latin squares (or MOLS) of order n.


1




OFFSET

2,2


COMMENTS

By convention, a(0) = a(1) = infinity.
Parker and others conjecture that a(10) = 2.
It is also known that a(11) = 10, a(12) >= 5.


REFERENCES

CRC Handbook of Combinatorial Designs, 1996, pp. 113ff.
S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, SpringerVerlag, NY, 1999, Chapter 8.
E. T. Parker, Attempts for orthogonal latin 10squares, Abstracts Amer. Math. Soc., Vol. 12 1991 #91T0527.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 58 Penguin Books 1997.


LINKS

Table of n, a(n) for n=2..9.
Anonymous, Order10 GrecoLatin square.
R. C. Bose & S. S. Shrikhande, On The Falsity Of Euler's Conjecture About The NonExistence Of Two Orthogonal Latin Squares Of Order 4t+2, Proc. Nat. Acad. Sci., 1959 45 (5) 734737.
C. J. Colbourn & J. H. Dinitz, Mutually Orthogonal Latin Squares:A Brief Survey of Constructions
M. Dettinger, Euler's Square
David Joyner and JonLark Kim, Kittens, Mathematical Blackjack, and Combinatorial Codes, Chapter 3 in Selected Unsolved Problems in Coding Theory, Applied and Numerical Harmonic Analysis, Springer, 2011, pp. 4770, DOI: 10.1007/9780817682569_3.
E. T. Parker, Orthogonal Latin Squares, Proc. Nat. Acad. Sci., 1959 45 (6) 859862.
E. ParkerWoodruff, GrecoLatin Squares Problem
Eric Weisstein's World of Mathematics, Euler's GraecoRoman Squares Conjecture
Index entries for sequences related to Latin squares and rectangles


CROSSREFS

Sequence in context: A129708 A071518 A065338 * A105587 A049073 A076388
Adjacent sequences: A001435 A001436 A001437 * A001439 A001440 A001441


KEYWORD

nonn,hard,more,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



