This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274806 Number of diagonal Latin squares of order n. 3
1, 0, 0, 48, 960, 92160, 862848000, 300286741708800, 1835082219864832081920 (list; graph; refs; listen; history; text; internal format)



Table of n, a(n) for n=1..9.

E. I. Vatutin, O. S. Zaikin, A. D. Zhuravlev, M. O. Manzuk, S. E. Kochemazov and V. S. Titov, Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares, Proceedings of Distributed Computing and grid-technologies in science and education (GRID'16), JINR, Dubna, 2016, pp. 114-115.

E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, Applying Volunteer and Parallel Computing for Enumerating Diagonal Latin Squares of Order 9, Parallel Computational Technologies. PCT 2017. Communications in Computer and Information Science, vol. 753, pp. 114-129. doi: 10.1007/978-3-319-67035-5_9

Vatutin E. I., Zaikin O. S., Zhuravlev A. D., Manzuk M. O., Kochemazov S. E., Titov V. S., The effect of filling cells order to the rate of generation of diagonal Latin squares. Information-measuring and diagnosing control systems (Diagnostics - 2016). Kursk: SWSU, 2016. pp. 33-39. (in Russian)

E. I. Vatutin, V. S. Titov, O. S. Zaikin, S. E. Kochemazov, S. U. Valyaev, A. D. Zhuravlev, M. O. Manzuk, Using grid systems for enumerating combinatorial objects with example of diagonal Latin squares, Information technologies and mathematical modeling of systems (2016), pp. 154-157, (in Russian)

Eduard I. Vatutin, a(9) value fixed

Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S., Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares. CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787. pp. 486-490. urn:nbn:de:0074-1787-5.

Index entries for sequences related to Latin squares and rectangles


a(n) = A274171(n) * n!.


Cf. A000315, A000479, A274171.

Sequence in context: A233674 A293778 A089903 * A292045 A272778 A160068

Adjacent sequences:  A274803 A274804 A274805 * A274807 A274808 A274809




Eduard I. Vatutin, Jul 07 2016


a(9) from Vatutin et al. (2016) added by Max Alekseyev, Oct 05 2016

a(9) corrected by Eduard I. Vatutin, Oct 20 2016



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 22:58 EDT 2019. Contains 328379 sequences. (Running on oeis4.)