login
A058956
Let S(t) = 1 + s_1*t + s_2*t^2 + ... satisfy S' = -S/(2 + S); sequence gives denominators of s_n.
1
1, 3, 27, 1, 4374, 98415, 885735, 3720087, 55801305, 1291401630, 813583026900, 4027235983155, 724902476967900, 7710326345931300, 5343256157730390900, 52845390570959910, 5770716650348822172000, 441459823751684896158000
OFFSET
0,2
FORMULA
S(t) = 2*LambertW((1/2)*exp(-(1/2)*t)*exp(1/2)).
EXAMPLE
S(t) = 1-1/3*t+1/27*t^2-1/4374*t^4-1/98415*t^5+...
MATHEMATICA
m = 17; S[t_] = Sum[s[k] t^k, {k, 0, m}]; s[0] = 1;
sol = Solve[Thread[CoefficientList[S'[t] + S[t]/(2+S[t])+O[t]^m, t] == 0]];
s /@ Range[0, m] /. sol[[1]] // Denominator (* Jean-François Alcover, Oct 01 2019 *)
CROSSREFS
Cf. A058955.
Sequence in context: A378063 A219895 A088730 * A010257 A334567 A284863
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 13 2001
STATUS
approved