login
A023944
Theta series of laminated lattice LAMBDA_22.
1
1, 0, 49896, 2821632, 50332590, 467596800, 2900976144, 13527005184, 51515674056, 166963872768, 479797555248, 1241996861952, 2970712710438, 6601476879360, 13877851716432, 27612993881088, 52754008389390, 96534440589312, 171306687302520, 293591846287872
OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 174.
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
PROG
(Sage)
e = DirichletGroup(6).0
M = ModularForms(e, 11, QQ)
bases = [_.q_expansion(20) for _ in M.integral_basis()]
f = sum(x*y for (x, y) in zip(bases, [1, 0, 49896, 2821632, 50332590, 467596800, 2900976144, 13527005184, 51515674056, 166963872768, 479797555248, 1241996861952, 2970712710438]))
list(f) # Andy Huchala, Jun 14 2021
CROSSREFS
Sequence in context: A258131 A081636 A151636 * A159233 A145538 A106773
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Andy Huchala, Jun 14 2021
STATUS
approved