login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035469 Triangle read by rows, the Bell transform of the triple factorial numbers A007559(n+1) without column 0. 37
1, 4, 1, 28, 12, 1, 280, 160, 24, 1, 3640, 2520, 520, 40, 1, 58240, 46480, 11880, 1280, 60, 1, 1106560, 987840, 295960, 40040, 2660, 84, 1, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1, 608608000, 643843200 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Previous name was: Triangle of numbers related to triangle A035529; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297 and A035342.

a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing quartic (4-ary) trees. Proof based on the a(n,m) recurrence. See a D. Callan comment on the m=1 case A007559. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007

For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

REFERENCES

F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.

LINKS

Table of n, a(n) for n=1..38.

P. Bala, Generalized Dobinski formulas

P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.

Richell O. Celeste, Roberto B. Corcino, Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.

Tom Copeland, A Class of Differential Operators and the Stirling Numbers

T. Copeland, Mathemagical Forests

T. Copeland, Addendum to Mathemagical Forests

M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3

W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

W. Lang, First 10 rows.

Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012

E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.

Mathias Pétréolle, Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.

FORMULA

a(n, m) = sum(|A051141(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m):=A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.

a(n, m) = n!*A035529(n, m)/(m!*3^(n-m)); a(n+1, m) = (3*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1;

E.g.f. of m-th column: ((-1+(1-3*x)^(-1/3))^m)/m!.

From Peter Bala, Nov 25 2011: (Start)

E.g.f.: G(x,t) = exp(t*A(x)) = 1+t*x+(4*t+t^2)*x^2/2!+(28*t+12*t^2+t^3)*x^3/3!+..., where A(x) = -1 + (1-3*x)^(-1/3) satisfies the autonomous differential equation A'(x) = (1+A(x))^4.

The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-3*x)*dG/dx, from which follows the recurrence given above.

The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^4*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035342 (D = (1+x)^3*d/dx) and A049029 (D = (1+x)^5*d/dx).

(End)

Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*sum {k = 0..inf} k*(k+3)*(k+6)*...*(k+3*(n-1))*x^k/k!. - Peter Bala, Jun 23 2014

EXAMPLE

Triangle starts:

     {1}

     {4,    1}

    {28,   12,    1}

   {280,  160,   24,    1}

  {3640, 2520,  520,   40,    1}

MATHEMATICA

a[n_, m_] /; n >= m >= 1 := a[n, m] = (3(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 22 2011 *)

rows = 9;

a[n_, m_] := BellY[n, m, Table[Product[3k+1, {k, 0, j}], {j, 0, rows}]];

Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)

PROG

(Sage)

# The function bell_matrix is defined in A264428.

# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.

bell_matrix(lambda n: A007559(n+1) , 9) # Peter Luschny, Jan 19 2016

CROSSREFS

a(n, m)=: S2(4, n, m) is the fourth triangle of numbers in the sequence S2(1, n, m) := A008277(n, m) (Stirling 2nd kind), S2(2, n, m) := A008297(n, m) (Lah), S2(3, n, m) := A035342(n, m). a(n, 1)= A007559(n).

Row sums: A049119(n), n >= 1.

Cf. A094638.

Sequence in context: A119304 A114150 A134149 * A290598 A226936 A073323

Adjacent sequences:  A035466 A035467 A035468 * A035470 A035471 A035472

KEYWORD

easy,nice,nonn,tabl

AUTHOR

Wolfdieter Lang

EXTENSIONS

New name from Peter Luschny, Jan 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 02:29 EDT 2019. Contains 327995 sequences. (Running on oeis4.)