login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035470 Number of ways to break {1,2,3,...n} into sets with equal sums. 22
1, 1, 2, 2, 2, 2, 6, 12, 11, 2, 80, 166, 2, 665, 2918, 3309, 9296, 23730, 31875, 301030, 422897, 2, 13716867, 71504980, 100664385, 54148591, 880696662, 498017759, 27450476787, 111911522819, 179459955554, 2144502175214, 59115423983, 45837019664552 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) = 2 <=> |{d|n*(n+1)/2 : d>=n}| = 2. - Alois P. Heinz, Sep 03 2009

LINKS

Table of n, a(n) for n=1..34.

Gus Wiseman, Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.

EXAMPLE

a(7) = 6 since we have 1234567, 16/25/34/7, 167/2345, 257/1346, 347/1256, 356/1247.

From Gus Wiseman, Jul 13 2019: (Start)

The a(6) = 2 through a(9) = 11 set partitions with equal block-sums:

  {123456}      {1234567}        {12345678}        {123456789}

  {16}{25}{34}  {1247}{356}      {12348}{567}      {12345}{69}{78}

                {1256}{347}      {12357}{468}      {1239}{456}{78}

                {1346}{257}      {12456}{378}      {1248}{357}{69}

                {167}{2345}      {1278}{3456}      {1257}{348}{69}

                {16}{25}{34}{7}  {1368}{2457}      {1347}{258}{69}

                                 {1458}{2367}      {1356}{249}{78}

                                 {1467}{2358}      {159}{2346}{78}

                                 {1236}{48}{57}    {159}{267}{348}

                                 {138}{246}{57}    {168}{249}{357}

                                 {156}{237}{48}    {18}{27}{36}{45}{9}

                                 {18}{27}{36}{45}

(End)

MAPLE

with(numtheory): b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local i, m, x; m:= n*(n+1)/2; 1+ add(b(i$(m/i), n)/(m/i)!, i=[select(x-> x>=n, divisors(m) minus {m})[]]) end: seq(a(n), n=1..25);  # Alois P. Heinz, Sep 03 2009

MATHEMATICA

b[args_List] := b[args] = If[args[[1]] == 0, If[Length[args] == 2, 1, b[Rest[args]]], Sum[If[args[[j]] - args[[-1]] < 0, 0, b[Sort[Join[Table[ args[[i]] - If[i == j, args[[-1]], 0], {i, 1, Length[args]-1}]]], {args[[-1]]-1}]], {j, 1, Length[args]-1}]]; b[a1_List, a2_List] := b[Join[a1, a2]];

a[n_] := a[n] = With[{m = n*(n+1)/2}, 1+Sum[b[Append[Array[i&, m/i], n]] / (m/i)!, {i, Select[Divisors[m] ~Complement~ {m}, # >= n &]}]];

Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-Fran├žois Alcover, Mar 22 2017, after Alois P. Heinz *)

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

Table[Length[Select[sps[Range[n]], SameQ@@Total/@#&]], {n, 0, 10}] (* Gus Wiseman, Jul 13 2019 *)

CROSSREFS

Cf. A164977, A164978. - Alois P. Heinz, Sep 03 2009

Row sums of A275714.

Cf. A000110, A007837, A038041, A112956, A275780, A275781, A321455, A326512, A326513, A326518, A326534.

Sequence in context: A078014 A063867 A024723 * A061292 A138068 A246052

Adjacent sequences:  A035467 A035468 A035469 * A035471 A035472 A035473

KEYWORD

nonn

AUTHOR

Erich Friedman

EXTENSIONS

More terms from John W. Layman, Mar 18 2002

a(19)-a(33) from Alois P. Heinz, Sep 03 2009

a(34) from Alois P. Heinz, May 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 11:28 EDT 2019. Contains 328056 sequences. (Running on oeis4.)