login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049385
Triangle of numbers related to triangle A049375; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297...
33
1, 6, 1, 66, 18, 1, 1056, 372, 36, 1, 22176, 9240, 1200, 60, 1, 576576, 271656, 42840, 2940, 90, 1, 17873856, 9269568, 1685376, 142800, 6090, 126, 1, 643458816, 360847872, 73313856, 7254576, 386400, 11256, 168, 1, 26381811456, 15799069440
OFFSET
1,2
COMMENTS
a(n,m) := S2(6; n,m) is the sixth triangle of numbers in the sequence S2(k; n,m), k=1..6: A008277 (unsigned Stirling 2nd kind), A008297 (unsigned Lah), A035342, A035469, A049029, respectively. a(n,1)= A008548(n).
a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing 6-ary trees. Proof based on the a(n,m) recurrence. See also the F. Bergeron et al. reference, especially Table 1, first row and Example 1 for the e.g.f. for m=1. - Wolfdieter Lang, Sep 14 2007
LINKS
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48. Added Mar 01 2014.
F. Bergeron, Philippe Flajolet and Bruno Salvy, Varieties of increasing trees, HAL, Rapport De Recherche Inria. Added Mar 01 2014.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
W. Lang, First 10 rows.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO]. - From N. J. A. Sloane, Aug 21 2012
E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
FORMULA
a(n, m) = n!*A049375(n, m)/(m!*5^(n-m)); a(n+1, m) = (5*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1; E.g.f. of m-th column: ((-1+(1-5*x)^(-1/5))^m)/m!.
a(n, m) = sum(|A051150(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.
EXAMPLE
Triangle begins:
{1};
{6,1};
{66,18,1};
{1056,372,36,1};
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> mul(5*k+1, k=0..n), 9); # Peter Luschny, Jan 28 2016
MATHEMATICA
a[n_, m_] := n!*Coefficient[Series[((-1 + (1 - 5*x)^(-1/5))^m)/m!, {x, 0, n}], x^n];
Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]]
(* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
rows = 9;
t = Table[Product[5k+1, {k, 0, n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
CROSSREFS
Cf. A049412.
Sequence in context: A134279 A134280 A134278 * A266364 A356653 A009384
KEYWORD
easy,nonn,tabl
STATUS
approved