login
A134280
Triangle of numbers obtained from the partition array A134279.
4
1, 6, 1, 66, 6, 1, 1056, 102, 6, 1, 22176, 1452, 102, 6, 1, 576576, 32868, 1668, 102, 6, 1, 17873856, 779328, 35244, 1668, 102, 6, 1, 643458816, 23912064, 843480, 36540, 1668, 102, 6, 1, 26381811456, 812173824, 25416072, 857736, 36540, 1668, 102, 6, 1
OFFSET
1,2
COMMENTS
This triangle is named S2(6)'.
In the same manner the unsigned Lah triangle A008297 is obtained from the partition array A130561.
FORMULA
a(n,m)=sum(product(S2(6;j,1)^e(n,m,k,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,k,j) is the exponent of j in the k-th m part partition of n. S2(6;j,1) = A049385(n,1) = A008548(n) = (5*n-4)(!^5)(quintuple- or 5-factorials).
EXAMPLE
[1]; [6,1]; [66,6,1]; [1056,102,6,1]; [22176,1452,102,6,1]; ...
CROSSREFS
Cf. A134275 (S2(5)').
Cf. A134281 (row sums).
Cf. A134282 (alternating row sums).
Sequence in context: A364110 A197655 A134279 * A134278 A049385 A266364
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved