login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051150 Generalized Stirling number triangle of first kind. 8
1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n,m)= R_n^m(a=0,b=5) in the notation of the given reference.

a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n) = product(x-5*j,j=0..n-1), n >= 1, E(0,x) := 1, are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).

First (m=1) column sequence is: A052562(n-1). Row sums (signed triangle): A008546(n-1)*(-1)^(n-1). Row sums (unsigned triangle): A008548(n). A008275 (Stirling1 triangle) for b=1, A039683 for b=2, b=3: A051141, b=4: A051142.

This is the signed Stirling1 triangle A008275 with diagonal d>=0 (main diagonal d=0) scaled with 5^d.

REFERENCES

Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.

LINKS

Table of n, a(n) for n=1..32.

W. Lang, First 10 rows.

FORMULA

a(n, m) = a(n-1, m-1) - 5*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1. E.g.f. for m-th column of signed triangle: (((log(1+5*x))/5)^m)/m!.

a(n, m) = S1(n, m)*5^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).

EXAMPLE

{1}; {-5,1}; {50,-15,1}; {-750,275,-30,1}; ...

E(3,x) = 50*x-15*x^2+x^3.

CROSSREFS

Sequence in context: A134273 A048897 A049029 * A144341 A144342 A144268

Adjacent sequences:  A051147 A051148 A051149 * A051151 A051152 A051153

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)