The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039683 Signed double Pochhammer triangle: expansion of x(x-2)(x-4)..(x-2n+2). 21
 1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(n,m) = R_n^m(a=0,b=2) in the notation of the given reference. Exponential Riordan array [1/(1+2x),log(1+2x)/2]. The unsigned triangle is [1/(1-2x),log(1/sqrt(1-2x))]. - Paul Barry_, Apr 29 2009 The n-th row is related to the expansion of z^(-2n)*(z^3 d/dz)^n in polynomials of the Euler operator D=(z d/dz). E.g., z^(-6)(z^3 d/dz)^3 = D^3 + 6 D^2 + 8 D. See Copeland link for relations to Bell / Exponential / Touchard polynomial operators. - Tom Copeland, Nov 14 2013 A refinement of this array is given by A231846. - Tom Copeland, Nov 15 2013 Also the Bell transform of the double factorial of even numbers A000165 except that the values are unsigned and in addition a first column (1,0,0 ...) is added on the left side of the triangle. For the Bell transform of the double factorial of odd numbers A001147 see A132062. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015 The signed triangle is also the inverse Bell transform of A000079 (see Luschny link). - John Keith, Nov 24 2020 LINKS Richell O. Celeste, Roberto B. Corcino, Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5. Tom Copeland, Addendum to Mathemagical Forests. P. Feijão, F. V. Martinez, A. Thévenin, On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance, BMC Bioinformatics 16:Suppl19 (2015), S1. doi:10.1186/1471-2105-16-S19-S1 Lisa Glaser, Causal set actions in various dimensions, J. Phys.: Conf. Ser. 306 (2011), 012041. Wolfdieter Lang, First 9 rows and comment. Peter Luschny, The Bell transform D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres relies aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962). FORMULA T(n, m) = T(n-1, m-1) - 2*(n-1)*T(n-1, m), n >= m >= 1; T(n, m) := 0, n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 14:33 EDT 2021. Contains 343177 sequences. (Running on oeis4.)