This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039692 Jabotinsky-triangle related to A039647. 37
 1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 264, 450, 215, 30, 1, 2160, 4114, 2475, 565, 45, 1, 20880, 43512, 30814, 9345, 1225, 63, 1, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z)= A(z)/z = 1/(1-z-z^2) where A(z) is the g.f. of the Fibonacci numbers A000045. (Notation of F(z) as in Knuth's paper.) E(n,x) := sum_{m=1..n} a(n,m)*x^m, E(0,x)=1, are exponential convolution polynomials: E(n,x+y) = sum_{k=0..n} binomial(n,k)*E(k,x)*E(n-k,y) (cf. Knuth's paper with E(n,x)= n!*F(n,x)). E.g.f. for E(n,x): (1 - z - z^2)^(-x). Explicit a(n,m) formula: see Knuth's paper for f(n,m) formula with f(k)= A039647(n). E.g.f. for the m-th column sequence: ((-log(1 - z - z^2))^m)/m!. Also the Bell transform of n!*(F(n)+F(n+2)), F(n) the Fibonacci numbers. For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016 LINKS Vincenzo Librandi, Rows n = 1..50, flattened D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78. Peter Luschny, The Bell transform FORMULA a(n, 1)= A039647(n)=(n-1)!*L(n), L(n) := A000032(n) (Lucas); a(n, m) = sum_{j=1..n-m+1} binomial(n-1, j-1)*A039647(j)*a(n-j, m-1), n >= m >= 2. Conjectured row sums: sum_{m=1..n} a(n,m) = A005442(n). - R. J. Mathar, Jun 01 2009 T(n,m) = n!*sum_{k=m..n} stirling1(k,m)*binomial(k,n-k)*(-1)^(k+m)/k!. - Vladimir Kruchinin, Mar 26 2013 EXAMPLE 1; 3, 1; 8, 9, 1; 42, 59, 18, 1; 264, 450, 215, 30, 1; MAPLE A000032 := proc(n) option remember; coeftayl( (2-x)/(1-x-x^2), x=0, n) ; end: A039647 := proc(n) (n-1)!*A000032(n) ; end: A039692 := proc(n, m) option remember ; if m = 1 then A039647(n) ; else add( binomial(n-1, j-1)*A039647(j)*procname(n-j, m-1), j=1..n-m+1) ; fi; end: # R. J. Mathar, Jun 01 2009 MATHEMATICA t[n_, m_] := n!*Sum[StirlingS1[k, m]*Binomial[k, n-k]*(-1)^(k+m)/k!, {k, m, n}]; Table[t[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Vladimir Kruchinin *) PROG (Maxima) T(n, m) := n!*sum((stirling1(k, m)*binomial(k, n-k))*(-1)^(k+m)/k!, k, m, n); \\ Vladimir Kruchinin, Mar 26 2013 (PARI) T(n, m) = n!*sum(k=m, n, (stirling(k, m, 1)*binomial(k, n-k))*(-1)^(k+m)/k!); for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print()); /* Joerg Arndt, Mar 27 2013 */ (Sage) # The function bell_matrix is defined in A264428. # Adds 1, 0, 0, 0, ... as column 0 to the left side of the triangle. bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 16 2016 CROSSREFS Cf. A039647, A000032, A000045. Another version of this triangle is in A194938. Sequence in context: A176103 A076238 A008298 * A071815 A178301 A120236 Adjacent sequences:  A039689 A039690 A039691 * A039693 A039694 A039695 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.